Cargando…

A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study

This study is aimed at assessing the distinctive features of patients with infected ascites and liver cirrhosis and developing a scoring system to allow for the accurate identification of patients not requiring abdominocentesis to rule out infected ascites. A total of 700 episodes of patients with d...

Descripción completa

Detalles Bibliográficos
Autores principales: Würstle, Silvia, Hapfelmeier, Alexander, Karapetyan, Siranush, Studen, Fabian, Isaakidou, Andriana, Schneider, Tillman, Schmid, Roland M., von Delius, Stefan, Gundling, Felix, Triebelhorn, Julian, Burgkart, Rainer, Obermeier, Andreas, Mayr, Ulrich, Heller, Stephan, Rasch, Sebastian, Lahmer, Tobias, Geisler, Fabian, Chan, Benjamin, Turner, Paul E., Rothe, Kathrin, Spinner, Christoph D., Schneider, Jochen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686825/
https://www.ncbi.nlm.nih.gov/pubmed/36421254
http://dx.doi.org/10.3390/antibiotics11111610
_version_ 1784835849860415488
author Würstle, Silvia
Hapfelmeier, Alexander
Karapetyan, Siranush
Studen, Fabian
Isaakidou, Andriana
Schneider, Tillman
Schmid, Roland M.
von Delius, Stefan
Gundling, Felix
Triebelhorn, Julian
Burgkart, Rainer
Obermeier, Andreas
Mayr, Ulrich
Heller, Stephan
Rasch, Sebastian
Lahmer, Tobias
Geisler, Fabian
Chan, Benjamin
Turner, Paul E.
Rothe, Kathrin
Spinner, Christoph D.
Schneider, Jochen
author_facet Würstle, Silvia
Hapfelmeier, Alexander
Karapetyan, Siranush
Studen, Fabian
Isaakidou, Andriana
Schneider, Tillman
Schmid, Roland M.
von Delius, Stefan
Gundling, Felix
Triebelhorn, Julian
Burgkart, Rainer
Obermeier, Andreas
Mayr, Ulrich
Heller, Stephan
Rasch, Sebastian
Lahmer, Tobias
Geisler, Fabian
Chan, Benjamin
Turner, Paul E.
Rothe, Kathrin
Spinner, Christoph D.
Schneider, Jochen
author_sort Würstle, Silvia
collection PubMed
description This study is aimed at assessing the distinctive features of patients with infected ascites and liver cirrhosis and developing a scoring system to allow for the accurate identification of patients not requiring abdominocentesis to rule out infected ascites. A total of 700 episodes of patients with decompensated liver cirrhosis undergoing abdominocentesis between 2006 and 2020 were included. Overall, 34 clinical, drug, and laboratory features were evaluated using machine learning to identify key differentiation criteria and integrate them into a point-score model. In total, 11 discriminatory features were selected using a Lasso regression model to establish a point-score model. Considering pre-test probabilities for infected ascites of 10%, 15%, and 25%, the negative and positive predictive values of the point-score model for infected ascites were 98.1%, 97.0%, 94.6% and 14.9%, 21.8%, and 34.5%, respectively. Besides the main model, a simplified model was generated, containing only features that are fast to collect, which revealed similar predictive values. Our point-score model appears to be a promising non-invasive approach to rule out infected ascites in clinical routine with high negative predictive values in patients with hydropic decompensated liver cirrhosis, but further external validation in a prospective study is needed.
format Online
Article
Text
id pubmed-9686825
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96868252022-11-25 A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study Würstle, Silvia Hapfelmeier, Alexander Karapetyan, Siranush Studen, Fabian Isaakidou, Andriana Schneider, Tillman Schmid, Roland M. von Delius, Stefan Gundling, Felix Triebelhorn, Julian Burgkart, Rainer Obermeier, Andreas Mayr, Ulrich Heller, Stephan Rasch, Sebastian Lahmer, Tobias Geisler, Fabian Chan, Benjamin Turner, Paul E. Rothe, Kathrin Spinner, Christoph D. Schneider, Jochen Antibiotics (Basel) Article This study is aimed at assessing the distinctive features of patients with infected ascites and liver cirrhosis and developing a scoring system to allow for the accurate identification of patients not requiring abdominocentesis to rule out infected ascites. A total of 700 episodes of patients with decompensated liver cirrhosis undergoing abdominocentesis between 2006 and 2020 were included. Overall, 34 clinical, drug, and laboratory features were evaluated using machine learning to identify key differentiation criteria and integrate them into a point-score model. In total, 11 discriminatory features were selected using a Lasso regression model to establish a point-score model. Considering pre-test probabilities for infected ascites of 10%, 15%, and 25%, the negative and positive predictive values of the point-score model for infected ascites were 98.1%, 97.0%, 94.6% and 14.9%, 21.8%, and 34.5%, respectively. Besides the main model, a simplified model was generated, containing only features that are fast to collect, which revealed similar predictive values. Our point-score model appears to be a promising non-invasive approach to rule out infected ascites in clinical routine with high negative predictive values in patients with hydropic decompensated liver cirrhosis, but further external validation in a prospective study is needed. MDPI 2022-11-12 /pmc/articles/PMC9686825/ /pubmed/36421254 http://dx.doi.org/10.3390/antibiotics11111610 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Würstle, Silvia
Hapfelmeier, Alexander
Karapetyan, Siranush
Studen, Fabian
Isaakidou, Andriana
Schneider, Tillman
Schmid, Roland M.
von Delius, Stefan
Gundling, Felix
Triebelhorn, Julian
Burgkart, Rainer
Obermeier, Andreas
Mayr, Ulrich
Heller, Stephan
Rasch, Sebastian
Lahmer, Tobias
Geisler, Fabian
Chan, Benjamin
Turner, Paul E.
Rothe, Kathrin
Spinner, Christoph D.
Schneider, Jochen
A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study
title A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study
title_full A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study
title_fullStr A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study
title_full_unstemmed A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study
title_short A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study
title_sort novel machine learning-based point-score model as a non-invasive decision-making tool for identifying infected ascites in patients with hydropic decompensated liver cirrhosis: a retrospective multicentre study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686825/
https://www.ncbi.nlm.nih.gov/pubmed/36421254
http://dx.doi.org/10.3390/antibiotics11111610
work_keys_str_mv AT wurstlesilvia anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT hapfelmeieralexander anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT karapetyansiranush anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT studenfabian anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT isaakidouandriana anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT schneidertillman anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT schmidrolandm anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT vondeliusstefan anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT gundlingfelix anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT triebelhornjulian anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT burgkartrainer anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT obermeierandreas anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT mayrulrich anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT hellerstephan anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT raschsebastian anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT lahmertobias anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT geislerfabian anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT chanbenjamin anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT turnerpaule anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT rothekathrin anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT spinnerchristophd anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT schneiderjochen anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT wurstlesilvia novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT hapfelmeieralexander novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT karapetyansiranush novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT studenfabian novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT isaakidouandriana novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT schneidertillman novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT schmidrolandm novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT vondeliusstefan novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT gundlingfelix novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT triebelhornjulian novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT burgkartrainer novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT obermeierandreas novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT mayrulrich novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT hellerstephan novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT raschsebastian novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT lahmertobias novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT geislerfabian novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT chanbenjamin novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT turnerpaule novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT rothekathrin novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT spinnerchristophd novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy
AT schneiderjochen novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy