Cargando…
A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study
This study is aimed at assessing the distinctive features of patients with infected ascites and liver cirrhosis and developing a scoring system to allow for the accurate identification of patients not requiring abdominocentesis to rule out infected ascites. A total of 700 episodes of patients with d...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686825/ https://www.ncbi.nlm.nih.gov/pubmed/36421254 http://dx.doi.org/10.3390/antibiotics11111610 |
_version_ | 1784835849860415488 |
---|---|
author | Würstle, Silvia Hapfelmeier, Alexander Karapetyan, Siranush Studen, Fabian Isaakidou, Andriana Schneider, Tillman Schmid, Roland M. von Delius, Stefan Gundling, Felix Triebelhorn, Julian Burgkart, Rainer Obermeier, Andreas Mayr, Ulrich Heller, Stephan Rasch, Sebastian Lahmer, Tobias Geisler, Fabian Chan, Benjamin Turner, Paul E. Rothe, Kathrin Spinner, Christoph D. Schneider, Jochen |
author_facet | Würstle, Silvia Hapfelmeier, Alexander Karapetyan, Siranush Studen, Fabian Isaakidou, Andriana Schneider, Tillman Schmid, Roland M. von Delius, Stefan Gundling, Felix Triebelhorn, Julian Burgkart, Rainer Obermeier, Andreas Mayr, Ulrich Heller, Stephan Rasch, Sebastian Lahmer, Tobias Geisler, Fabian Chan, Benjamin Turner, Paul E. Rothe, Kathrin Spinner, Christoph D. Schneider, Jochen |
author_sort | Würstle, Silvia |
collection | PubMed |
description | This study is aimed at assessing the distinctive features of patients with infected ascites and liver cirrhosis and developing a scoring system to allow for the accurate identification of patients not requiring abdominocentesis to rule out infected ascites. A total of 700 episodes of patients with decompensated liver cirrhosis undergoing abdominocentesis between 2006 and 2020 were included. Overall, 34 clinical, drug, and laboratory features were evaluated using machine learning to identify key differentiation criteria and integrate them into a point-score model. In total, 11 discriminatory features were selected using a Lasso regression model to establish a point-score model. Considering pre-test probabilities for infected ascites of 10%, 15%, and 25%, the negative and positive predictive values of the point-score model for infected ascites were 98.1%, 97.0%, 94.6% and 14.9%, 21.8%, and 34.5%, respectively. Besides the main model, a simplified model was generated, containing only features that are fast to collect, which revealed similar predictive values. Our point-score model appears to be a promising non-invasive approach to rule out infected ascites in clinical routine with high negative predictive values in patients with hydropic decompensated liver cirrhosis, but further external validation in a prospective study is needed. |
format | Online Article Text |
id | pubmed-9686825 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96868252022-11-25 A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study Würstle, Silvia Hapfelmeier, Alexander Karapetyan, Siranush Studen, Fabian Isaakidou, Andriana Schneider, Tillman Schmid, Roland M. von Delius, Stefan Gundling, Felix Triebelhorn, Julian Burgkart, Rainer Obermeier, Andreas Mayr, Ulrich Heller, Stephan Rasch, Sebastian Lahmer, Tobias Geisler, Fabian Chan, Benjamin Turner, Paul E. Rothe, Kathrin Spinner, Christoph D. Schneider, Jochen Antibiotics (Basel) Article This study is aimed at assessing the distinctive features of patients with infected ascites and liver cirrhosis and developing a scoring system to allow for the accurate identification of patients not requiring abdominocentesis to rule out infected ascites. A total of 700 episodes of patients with decompensated liver cirrhosis undergoing abdominocentesis between 2006 and 2020 were included. Overall, 34 clinical, drug, and laboratory features were evaluated using machine learning to identify key differentiation criteria and integrate them into a point-score model. In total, 11 discriminatory features were selected using a Lasso regression model to establish a point-score model. Considering pre-test probabilities for infected ascites of 10%, 15%, and 25%, the negative and positive predictive values of the point-score model for infected ascites were 98.1%, 97.0%, 94.6% and 14.9%, 21.8%, and 34.5%, respectively. Besides the main model, a simplified model was generated, containing only features that are fast to collect, which revealed similar predictive values. Our point-score model appears to be a promising non-invasive approach to rule out infected ascites in clinical routine with high negative predictive values in patients with hydropic decompensated liver cirrhosis, but further external validation in a prospective study is needed. MDPI 2022-11-12 /pmc/articles/PMC9686825/ /pubmed/36421254 http://dx.doi.org/10.3390/antibiotics11111610 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Würstle, Silvia Hapfelmeier, Alexander Karapetyan, Siranush Studen, Fabian Isaakidou, Andriana Schneider, Tillman Schmid, Roland M. von Delius, Stefan Gundling, Felix Triebelhorn, Julian Burgkart, Rainer Obermeier, Andreas Mayr, Ulrich Heller, Stephan Rasch, Sebastian Lahmer, Tobias Geisler, Fabian Chan, Benjamin Turner, Paul E. Rothe, Kathrin Spinner, Christoph D. Schneider, Jochen A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study |
title | A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study |
title_full | A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study |
title_fullStr | A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study |
title_full_unstemmed | A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study |
title_short | A Novel Machine Learning-Based Point-Score Model as a Non-Invasive Decision-Making Tool for Identifying Infected Ascites in Patients with Hydropic Decompensated Liver Cirrhosis: A Retrospective Multicentre Study |
title_sort | novel machine learning-based point-score model as a non-invasive decision-making tool for identifying infected ascites in patients with hydropic decompensated liver cirrhosis: a retrospective multicentre study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686825/ https://www.ncbi.nlm.nih.gov/pubmed/36421254 http://dx.doi.org/10.3390/antibiotics11111610 |
work_keys_str_mv | AT wurstlesilvia anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT hapfelmeieralexander anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT karapetyansiranush anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT studenfabian anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT isaakidouandriana anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT schneidertillman anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT schmidrolandm anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT vondeliusstefan anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT gundlingfelix anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT triebelhornjulian anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT burgkartrainer anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT obermeierandreas anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT mayrulrich anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT hellerstephan anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT raschsebastian anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT lahmertobias anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT geislerfabian anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT chanbenjamin anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT turnerpaule anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT rothekathrin anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT spinnerchristophd anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT schneiderjochen anovelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT wurstlesilvia novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT hapfelmeieralexander novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT karapetyansiranush novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT studenfabian novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT isaakidouandriana novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT schneidertillman novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT schmidrolandm novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT vondeliusstefan novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT gundlingfelix novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT triebelhornjulian novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT burgkartrainer novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT obermeierandreas novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT mayrulrich novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT hellerstephan novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT raschsebastian novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT lahmertobias novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT geislerfabian novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT chanbenjamin novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT turnerpaule novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT rothekathrin novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT spinnerchristophd novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy AT schneiderjochen novelmachinelearningbasedpointscoremodelasanoninvasivedecisionmakingtoolforidentifyinginfectedascitesinpatientswithhydropicdecompensatedlivercirrhosisaretrospectivemulticentrestudy |