Cargando…
Necroptosis Blockade Potentiates the Neuroprotective Effect of Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy
Neonatal encephalopathy (NE) caused by hypoxia-ischemia (HI) affects around 1 per 1000 term newborns and is the leading cause of acquired brain injury and neurodisability. Despite the use of hypothermia (HT) as a standard of care, the incidence of NE and its devastating outcomes remains a major issu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687213/ https://www.ncbi.nlm.nih.gov/pubmed/36428481 http://dx.doi.org/10.3390/biomedicines10112913 |
_version_ | 1784835948441239552 |
---|---|
author | Chevin, Mathilde Chabrier, Stéphane Allard, Marie-Julie Sébire, Guillaume |
author_facet | Chevin, Mathilde Chabrier, Stéphane Allard, Marie-Julie Sébire, Guillaume |
author_sort | Chevin, Mathilde |
collection | PubMed |
description | Neonatal encephalopathy (NE) caused by hypoxia-ischemia (HI) affects around 1 per 1000 term newborns and is the leading cause of acquired brain injury and neurodisability. Despite the use of hypothermia (HT) as a standard of care, the incidence of NE and its devastating outcomes remains a major issue. Ongoing research surrounding add-on neuroprotective strategies against NE is important as HT effects are limited, leaving 50% of treated patients with neurological sequelae. Little is known about the interaction between necroptotic blockade and HT in neonatal HI. Using a preclinical Lewis rat model of term human NE induced by HI, we showed a neuroprotective effect of Necrostatin-1 (Nec-1: a compound blocking necroptosis) in combination with HT. The beneficial effect of Nec-1 added to HT against NE injuries was observed at the mechanistic level on both pMLKL and TNF-α, and at the anatomical level on brain volume loss visualized by magnetic resonance imaging (MRI). HT alone showed no effect on activated necroptotic effectors and did not preserve the brain MRI volume. This study opens new avenues of research to understand better the specific cell death mechanisms of brain injuries as well as the potential use of new therapeutics targeting the necroptosis pathway. |
format | Online Article Text |
id | pubmed-9687213 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96872132022-11-25 Necroptosis Blockade Potentiates the Neuroprotective Effect of Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy Chevin, Mathilde Chabrier, Stéphane Allard, Marie-Julie Sébire, Guillaume Biomedicines Article Neonatal encephalopathy (NE) caused by hypoxia-ischemia (HI) affects around 1 per 1000 term newborns and is the leading cause of acquired brain injury and neurodisability. Despite the use of hypothermia (HT) as a standard of care, the incidence of NE and its devastating outcomes remains a major issue. Ongoing research surrounding add-on neuroprotective strategies against NE is important as HT effects are limited, leaving 50% of treated patients with neurological sequelae. Little is known about the interaction between necroptotic blockade and HT in neonatal HI. Using a preclinical Lewis rat model of term human NE induced by HI, we showed a neuroprotective effect of Necrostatin-1 (Nec-1: a compound blocking necroptosis) in combination with HT. The beneficial effect of Nec-1 added to HT against NE injuries was observed at the mechanistic level on both pMLKL and TNF-α, and at the anatomical level on brain volume loss visualized by magnetic resonance imaging (MRI). HT alone showed no effect on activated necroptotic effectors and did not preserve the brain MRI volume. This study opens new avenues of research to understand better the specific cell death mechanisms of brain injuries as well as the potential use of new therapeutics targeting the necroptosis pathway. MDPI 2022-11-13 /pmc/articles/PMC9687213/ /pubmed/36428481 http://dx.doi.org/10.3390/biomedicines10112913 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chevin, Mathilde Chabrier, Stéphane Allard, Marie-Julie Sébire, Guillaume Necroptosis Blockade Potentiates the Neuroprotective Effect of Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy |
title | Necroptosis Blockade Potentiates the Neuroprotective Effect of Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy |
title_full | Necroptosis Blockade Potentiates the Neuroprotective Effect of Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy |
title_fullStr | Necroptosis Blockade Potentiates the Neuroprotective Effect of Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy |
title_full_unstemmed | Necroptosis Blockade Potentiates the Neuroprotective Effect of Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy |
title_short | Necroptosis Blockade Potentiates the Neuroprotective Effect of Hypothermia in Neonatal Hypoxic-Ischemic Encephalopathy |
title_sort | necroptosis blockade potentiates the neuroprotective effect of hypothermia in neonatal hypoxic-ischemic encephalopathy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687213/ https://www.ncbi.nlm.nih.gov/pubmed/36428481 http://dx.doi.org/10.3390/biomedicines10112913 |
work_keys_str_mv | AT chevinmathilde necroptosisblockadepotentiatestheneuroprotectiveeffectofhypothermiainneonatalhypoxicischemicencephalopathy AT chabrierstephane necroptosisblockadepotentiatestheneuroprotectiveeffectofhypothermiainneonatalhypoxicischemicencephalopathy AT allardmariejulie necroptosisblockadepotentiatestheneuroprotectiveeffectofhypothermiainneonatalhypoxicischemicencephalopathy AT sebireguillaume necroptosisblockadepotentiatestheneuroprotectiveeffectofhypothermiainneonatalhypoxicischemicencephalopathy |