Cargando…
A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms
Breast cancer, which attacks the glandular epithelium of the breast, is the second most common kind of cancer in women after lung cancer, and it affects a significant number of people worldwide. Based on the advantages of Residual Convolutional Network and the Transformer Encoder with Multiple Layer...
Autores principales: | Al-Tam, Riyadh M., Al-Hejri, Aymen M., Narangale, Sachin M., Samee, Nagwan Abdel, Mahmoud, Noha F., Al-masni, Mohammed A., Al-antari, Mugahed A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687367/ https://www.ncbi.nlm.nih.gov/pubmed/36428538 http://dx.doi.org/10.3390/biomedicines10112971 |
Ejemplares similares
-
ETECADx: Ensemble Self-Attention Transformer Encoder for Breast Cancer Diagnosis Using Full-Field Digital X-ray Breast Images
por: Al-Hejri, Aymen M., et al.
Publicado: (2022) -
A Hybrid Deep Transfer Learning of CNN-Based LR-PCA for Breast Lesion Diagnosis via Medical Breast Mammograms
por: Samee, Nagwan Abdel, et al.
Publicado: (2022) -
Using deep DenseNet with cyclical learning rate to classify leukocytes for leukemia identification
por: Houssein, Essam H., et al.
Publicado: (2023) -
Deep Active Learning for Automatic Mitotic Cell Detection on HEp-2 Specimen Medical Images
por: Anaam, Asaad, et al.
Publicado: (2023) -
BCNet: A Deep Learning Computer-Aided Diagnosis Framework for Human Peripheral Blood Cell Identification
por: Chola, Channabasava, et al.
Publicado: (2022)