Cargando…
A Machine Learning Approach for Recommending Herbal Formulae with Enhanced Interpretability and Applicability
Herbal formulae (HFs) are representative interventions in Korean medicine (KM) for the prevention and treatment of various diseases. Here, we proposed a machine learning-based approach for HF recommendation with enhanced interpretability and applicability. A dataset consisting of clinical symptoms,...
Autores principales: | Lee, Won-Yung, Lee, Youngseop, Lee, Siwoo, Kim, Young Woo, Kim, Ji-Hwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687459/ https://www.ncbi.nlm.nih.gov/pubmed/36358954 http://dx.doi.org/10.3390/biom12111604 |
Ejemplares similares
-
Machine learning-based prediction of Sasang constitution types using comprehensive clinical information and identification of key features for diagnosis
por: Park, Sa-Yoon, et al.
Publicado: (2021) -
Developing an optimized cold/heat questionnaire
por: Yoon, Youngheum, et al.
Publicado: (2015) -
Recognition of and interventions for Mibyeong (subhealth) in South Korea: a national web-based survey of Korean medicine practitioners
por: Lee, JaeChul, et al.
Publicado: (2014) -
Exploratory Analysis of the Sasang Constitution by Combining Network Analysis and Information Entropy
por: Lee, Won-Yung, et al.
Publicado: (2022) -
Interpretable Machine Learning for Personalized Medical Recommendations: A LIME-Based Approach
por: Wu, Yuanyuan, et al.
Publicado: (2023)