Cargando…
Generalization Performance of Quantum Metric Learning Classifiers
Quantum computing holds great promise for a number of fields including biology and medicine. A major application in which quantum computers could yield advantage is machine learning, especially kernel-based approaches. A recent method termed quantum metric learning, in which a quantum embedding whic...
Autores principales: | Kim, Jonathan, Bekiranov, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687469/ https://www.ncbi.nlm.nih.gov/pubmed/36358927 http://dx.doi.org/10.3390/biom12111576 |
Ejemplares similares
-
Multi-Level Comparison of Machine Learning Classifiers and Their Performance Metrics
por: Rácz, Anita, et al.
Publicado: (2019) -
Implementation of a Hamming distance–like genomic quantum classifier using inner products on ibmqx2 and ibmq_16_melbourne
por: Kathuria, Kunal, et al.
Publicado: (2020) -
Classifiers and their Metrics Quantified
por: Brown, J. B.
Publicado: (2018) -
Fisher Information as General Metrics of Quantum Synchronization
por: Shen, Yuan, et al.
Publicado: (2023) -
Quantum ensembles of quantum classifiers
por: Schuld, Maria, et al.
Publicado: (2018)