Cargando…
PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood Pressure (ABP) Waveforms
Cardiovascular diseases are one of the most severe causes of mortality, annually taking a heavy toll on lives worldwide. Continuous monitoring of blood pressure seems to be the most viable option, but this demands an invasive process, introducing several layers of complexities and reliability concer...
Autores principales: | Ibtehaz, Nabil, Mahmud, Sakib, Chowdhury, Muhammad E. H., Khandakar, Amith, Salman Khan, Muhammad, Ayari, Mohamed Arselene, Tahir, Anas M., Rahman, M. Sohel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687508/ https://www.ncbi.nlm.nih.gov/pubmed/36421093 http://dx.doi.org/10.3390/bioengineering9110692 |
Ejemplares similares
-
A Shallow U-Net Architecture for Reliably Predicting Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardiogram (ECG) Signals
por: Mahmud, Sakib, et al.
Publicado: (2022) -
Analysis on Four Derivative Waveforms of Photoplethysmogram (PPG) for Fiducial Point Detection
por: Suboh, Mohd Zubir, et al.
Publicado: (2022) -
Classification of Diabetes Using Photoplethysmogram (PPG) Waveform Analysis: Logistic Regression Modeling
por: Qawqzeh, Yousef K., et al.
Publicado: (2020) -
Detection and Severity Classification of COVID-19 in CT Images Using Deep Learning
por: Qiblawey, Yazan, et al.
Publicado: (2021) -
Lightweight End-to-End Deep Learning Solution for Estimating the Respiration Rate from Photoplethysmogram Signal
por: Chowdhury, Moajjem Hossain, et al.
Publicado: (2022)