Cargando…
SelfCoLearn: Self-Supervised Collaborative Learning for Accelerating Dynamic MR Imaging
Lately, deep learning technology has been extensively investigated for accelerating dynamic magnetic resonance (MR) imaging, with encouraging progresses achieved. However, without fully sampled reference data for training, the current approaches may have limited abilities in recovering fine details...
Autores principales: | Zou, Juan, Li, Cheng, Jia, Sen, Wu, Ruoyou, Pei, Tingrui, Zheng, Hairong, Wang, Shanshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687509/ https://www.ncbi.nlm.nih.gov/pubmed/36354561 http://dx.doi.org/10.3390/bioengineering9110650 |
Ejemplares similares
-
A novel collaborative self-supervised learning method for radiomic data
por: Li, Zhiyuan, et al.
Publicado: (2023) -
A layer-wise fusion network incorporating self-supervised learning for multimodal MR image synthesis
por: Zhou, Qian, et al.
Publicado: (2022) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020) -
Heuristic Attention Representation Learning for Self-Supervised Pretraining
por: Tran, Van Nhiem, et al.
Publicado: (2022) -
Audio self-supervised learning: A survey
por: Liu, Shuo, et al.
Publicado: (2022)