Cargando…
Feature–Classifier Pairing Compatibility for sEMG Signals in Hand Gesture Recognition under Joint Effects of Processing Procedures
Gesture recognition using surface electromyography (sEMG) serves many applications, from human–machine interfaces to prosthesis control. Many features have been adopted to enhance recognition accuracy. However, studies mostly compare features under a prechosen feature window size or a classifier, bi...
Autores principales: | Asfour, Mohammed, Menon, Carlo, Jiang, Xianta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687536/ https://www.ncbi.nlm.nih.gov/pubmed/36354545 http://dx.doi.org/10.3390/bioengineering9110634 |
Ejemplares similares
-
sEMG-Based Gesture Classifier for a Rehabilitation Glove
por: Copaci, Dorin, et al.
Publicado: (2022) -
sEMG-Based Hand Gesture Recognition Using Binarized Neural Network
por: Kang, Soongyu, et al.
Publicado: (2023) -
A novel hand gesture recognition method based on 2-channel sEMG
por: Yu, Hailong, et al.
Publicado: (2018) -
Simultaneous sEMG Classification of Hand/Wrist Gestures and Forces
por: Leone, Francesca, et al.
Publicado: (2019) -
A novel concatenate feature fusion RCNN architecture for sEMG-based hand gesture recognition
por: Xu, Pufan, et al.
Publicado: (2022)