Cargando…
An End-to-End Deep Learning Approach for Quantitative Microwave Breast Imaging in Real-Time Applications
(1) Background: In this paper, an artificial neural network approach for effective and real-time quantitative microwave breast imaging is proposed. It proposes some numerical analyses for the optimization of the network architecture and the improvement of recovery performance and processing time in...
Autores principales: | Ambrosanio, Michele, Franceschini, Stefano, Pascazio, Vito, Baselice, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687617/ https://www.ncbi.nlm.nih.gov/pubmed/36354562 http://dx.doi.org/10.3390/bioengineering9110651 |
Ejemplares similares
-
A Deep Learning Approach for Diagnosis Support in Breast Cancer Microwave Tomography
por: Franceschini, Stefano, et al.
Publicado: (2023) -
Microwave Breast Sensing via Deep Learning for Tumor Spatial Localization by Probability Maps
por: Borghouts, Marijn, et al.
Publicado: (2023) -
Hand Gesture Signatures Acquisition and Processing by Means of a Novel Ultrasound System
por: Franceschini, Stefano, et al.
Publicado: (2022) -
An Experimental Ultrasound System for Qualitative Tomographic Imaging
por: Ambrosanio, Michele, et al.
Publicado: (2022) -
Relaxation Time Estimation from Complex Magnetic Resonance Images
por: Baselice, Fabio, et al.
Publicado: (2010)