Cargando…

Ultrasensitive Fluorescence Lateral Flow Assay for Simultaneous Detection of Pseudomonas aeruginosa and Salmonella typhimurium via Wheat Germ Agglutinin-Functionalized Magnetic Quantum Dot Nanoprobe

Point-of-care testing methods for the rapid and sensitive screening of pathogenic bacteria are urgently needed because of the high number of outbreaks of microbial infections and foodborne diseases. In this study, we developed a highly sensitive and multiplex lateral flow assay (LFA) for the simulta...

Descripción completa

Detalles Bibliográficos
Autores principales: Tu, Zhijie, Yang, Xingsheng, Dong, Hao, Yu, Qing, Zheng, Shuai, Cheng, Xiaodan, Wang, Chongwen, Rong, Zhen, Wang, Shengqi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687718/
https://www.ncbi.nlm.nih.gov/pubmed/36354451
http://dx.doi.org/10.3390/bios12110942
Descripción
Sumario:Point-of-care testing methods for the rapid and sensitive screening of pathogenic bacteria are urgently needed because of the high number of outbreaks of microbial infections and foodborne diseases. In this study, we developed a highly sensitive and multiplex lateral flow assay (LFA) for the simultaneous detection of Pseudomonas aeruginosa and Salmonella typhimurium in complex samples by using wheat germ agglutinin (WGA)-modified magnetic quantum dots (Mag@QDs) as a universal detection nanoprobe. The Mag@QDs-WGA tag with a 200 nm Fe(3)O(4) core and multiple QD-formed shell was introduced into the LFA biosensor for the universal capture of the two target bacteria and provided the dual amplification effect of fluorescence enhancement and magnetic enrichment for ultra-sensitivity detection. Meanwhile, two antibacterial antibodies were separately sprayed onto the two test lines of the LFA strip to ensure the specific identification of P. aeruginosa and S. typhimurium through one test. The proposed LFA exhibited excellent analytical performance, including high capture rate (>80%) to the target pathogens, low detection limit (<30 cells/mL), short testing time (<35 min), and good reproducibility (relative standard deviation < 10.4%). Given these merits, the Mag@QDs-WGA-based LFA has a great potential for the on-site and real-time diagnosis of bacterial samples.