Cargando…
A Molecular Lateral Flow Assay for SARS-CoV-2 Quantitative Detection
Since the onset of the SARS-CoV-2 pandemic, several COVID-19 detection methods, both commercially available and in the lab, have been developed using different biomolecules as analytes and different detection and sampling methods with high analytical performance. Developing novel COVID-19 detection...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687750/ https://www.ncbi.nlm.nih.gov/pubmed/36354434 http://dx.doi.org/10.3390/bios12110926 |
Sumario: | Since the onset of the SARS-CoV-2 pandemic, several COVID-19 detection methods, both commercially available and in the lab, have been developed using different biomolecules as analytes and different detection and sampling methods with high analytical performance. Developing novel COVID-19 detection assays is an exciting research field, as rapid accurate diagnosis is a valuable tool to control the current pandemic, and also because the acquired knowledge can be deployed for facing future infectious outbreaks. We here developed a novel gold-nanoparticle-based nucleic acid lateral flow assay for the rapid, visual, and quantitative detection of SARS-CoV-2. Our method was based on the use of a DNA internal standard (competitor) for quantification and involved RT-PCR, the hybridization of biotinylated PCR products to specific oligonucleotide probes, and detection with a dual lateral flow assay using gold nanoparticles conjugated to an anti-biotin antibody as reporters. The developed test allowed for rapid detection by the naked eye and the simultaneous quantification of SARS-CoV-2 in nasopharyngeal swabs with high specificity, detectability, and repeatability. This novel molecular strip test for COVID-19 detection represents a simple, cost-effective, and accurate rapid test that is very promising to be used as a future diagnostic tool. |
---|