Cargando…
A Robust Framework Combining Image Processing and Deep Learning Hybrid Model to Classify Cardiovascular Diseases Using a Limited Number of Paper-Based Complex ECG Images
Heart disease can be life-threatening if not detected and treated at an early stage. The electrocardiogram (ECG) plays a vital role in classifying cardiovascular diseases, and often physicians and medical researchers examine paper-based ECG images for cardiac diagnosis. An automated heart disease pr...
Autores principales: | Fatema, Kaniz, Montaha, Sidratul, Rony, Md. Awlad Hossen, Azam, Sami, Hasan, Md. Zahid, Jonkman, Mirjam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687837/ https://www.ncbi.nlm.nih.gov/pubmed/36359355 http://dx.doi.org/10.3390/biomedicines10112835 |
Ejemplares similares
-
Development of an automated optimal distance feature-based decision system for diagnosing knee osteoarthritis using segmented X-ray images
por: Fatema, Kaniz, et al.
Publicado: (2023) -
Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using fine-tuned CNN model
por: Hossain, Shahed, et al.
Publicado: (2023) -
MNet-10: A robust shallow convolutional neural network model performing ablation study on medical images assessing the effectiveness of applying optimal data augmentation technique
por: Montaha, Sidratul, et al.
Publicado: (2022) -
BreastNet18: A High Accuracy Fine-Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images
por: Montaha, Sidratul, et al.
Publicado: (2021) -
A shallow deep learning approach to classify skin cancer using down-scaling method to minimize time and space complexity
por: Montaha, Sidratul, et al.
Publicado: (2022)