Cargando…
A Critical Remark on the Applications of Gas-Phase Biofilter (Packed-Bed Bioreactor) Models in Aqueous Systems
The principles of gas-phase biofilter systems, modeling, and operations are quite different from liquid-phase biofilter systems. Because of “biofilter” terminology used in both gas and liquid-phase systems, researchers often mistakenly use gas-phase models in liquid-phase applications for the analys...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9687948/ https://www.ncbi.nlm.nih.gov/pubmed/36354568 http://dx.doi.org/10.3390/bioengineering9110657 |
Sumario: | The principles of gas-phase biofilter systems, modeling, and operations are quite different from liquid-phase biofilter systems. Because of “biofilter” terminology used in both gas and liquid-phase systems, researchers often mistakenly use gas-phase models in liquid-phase applications for the analysis of data and determining kinetic parameters. For example, recent studies show a well-known gas-phase biofilter model, known as Ottengraf–Van Den Oever zero-order diffusion-limited model, is applied for analysis of experimental data from an aqueous biofilter system which is used for the removal of toxic divalent copper [Cu(II)] and chromium (VI). The objective of this research is to present the limitations and principles of gas-phase biofilter models and to highlight the incorrect use of gas-phase biofilter models in liquid-phase systems that can lead to erroneous results. The outcome of this work will facilitate scientists and engineers in distinguishing two different systems and selecting a more suitable biofilter model for the analysis of experimental data in determining kinetic parameters. |
---|