Cargando…
Rapid Convolutional Neural Networks for Gram-Stained Image Classification at Inference Time on Mobile Devices: Empirical Study from Transfer Learning to Optimization
Despite the emergence of mobile health and the success of deep learning (DL), deploying production-ready DL models to resource-limited devices remains challenging. Especially, during inference time, the speed of DL models becomes relevant. We aimed to accelerate inference time for Gram-stained analy...
Autores principales: | Kim, Hee E., Maros, Mate E., Siegel, Fabian, Ganslandt, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688012/ https://www.ncbi.nlm.nih.gov/pubmed/36359328 http://dx.doi.org/10.3390/biomedicines10112808 |
Ejemplares similares
-
Lightweight Visual Transformers Outperform Convolutional Neural Networks for Gram-Stained Image Classification: An Empirical Study
por: Kim, Hee E., et al.
Publicado: (2023) -
Transfer learning for medical image classification: a literature review
por: Kim, Hee E., et al.
Publicado: (2022) -
Deep Learning Frameworks for Rapid Gram Stain Image Data Interpretation: Protocol for a Retrospective Data Analysis
por: Kim, Hee, et al.
Publicado: (2020) -
Gram's Stain Revisited
por: Soper, David E.
Publicado: (1995) -
Gram-Positive Rods on a Cerebrospinal Fluid Gram Stain
por: Thompson, Amelia B, et al.
Publicado: (2017)