Cargando…
Improving Genomic Prediction with Machine Learning Incorporating TPE for Hyperparameters Optimization
SIMPLE SUMMARY: Machine learning has been a crucial implement for genomic prediction. However, the complicated process of tuning hyperparameters tremendously hindered its application in actual breeding programs, especially for people without experience tuning hyperparameters. In this study, we appli...
Autores principales: | Liang, Mang, An, Bingxing, Li, Keanning, Du, Lili, Deng, Tianyu, Cao, Sheng, Du, Yueying, Xu, Lingyang, Gao, Xue, Zhang, Lupei, Li, Junya, Gao, Huijiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688023/ https://www.ncbi.nlm.nih.gov/pubmed/36421361 http://dx.doi.org/10.3390/biology11111647 |
Ejemplares similares
-
Incorporating kernelized multi-omics data improves the accuracy of genomic prediction
por: Liang, Mang, et al.
Publicado: (2022) -
Incorporating genome-wide and transcriptome-wide association studies to identify genetic elements of longissimus dorsi muscle in Huaxi cattle
por: Liang, Mang, et al.
Publicado: (2023) -
Transcriptomics and Lipid Metabolomics Analysis of Subcutaneous, Visceral, and Abdominal Adipose Tissues of Beef Cattle
por: Du, Lili, et al.
Publicado: (2022) -
Genome-Wide Association Study Based on Random Regression Model Reveals Candidate Genes Associated with Longitudinal Data in Chinese Simmental Beef Cattle
por: Du, Lili, et al.
Publicado: (2021) -
Genome-Wide Association Analysis of Growth Curve Parameters in Chinese Simmental Beef Cattle
por: Duan, Xinghai, et al.
Publicado: (2021)