Cargando…
Multiple Machine Learning Approaches for Morphometric Parameters in Prediction of Hydrocephalus
Background: The diagnosis of hydrocephalus is mainly based on imaging findings. However, the significance of many imaging indicators may change, especially in some degenerative diseases, and even lead to misdiagnosis. Methods: This study explored the effectiveness of commonly used morphological para...
Autores principales: | Xu, Hao, Fang, Xiang, Jing, Xiaolei, Bao, Dejun, Niu, Chaoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688126/ https://www.ncbi.nlm.nih.gov/pubmed/36358410 http://dx.doi.org/10.3390/brainsci12111484 |
Ejemplares similares
-
Shunt-Dependent Post-Traumatic Hydrocephalus: Predictors and Long-Term Functional Outcomes
por: Xu, Hao, et al.
Publicado: (2023) -
Multiple Machine Learning Approaches Based on Postoperative Prediction of Pulmonary Complications in Patients With Emergency Cerebral Hemorrhage Surgery
por: Jing, Xiaolei, et al.
Publicado: (2022) -
Using machine learning to predict processes and morphometric features of watershed
por: Mokarram, Marzieh, et al.
Publicado: (2023) -
Author Correction: Using machine learning to predict processes and morphometric features of watershed
por: Mokarram, Marzieh, et al.
Publicado: (2023) -
Enhancing the prediction for shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage using a machine learning approach
por: Frey, Dietmar, et al.
Publicado: (2023)