Cargando…

Prostate-Specific Antigen Monitoring Using Nano Zinc(II) Metal–Organic Framework-Based Optical Biosensor

Background: The prostate-specific antigen (PSA) is an important cancer biomarker that is commonly utilized in the diagnosis of prostate cancer. The development of a PSA determination technique that is rapid, simple, and inexpensive, in addition to highly accurate, sensitive, and selective, remains a...

Descripción completa

Detalles Bibliográficos
Autores principales: El-Sheikh, Said M., Sheta, Sheta M., Salem, Salem R., Abd-Elzaher, Mohkles M., Basaleh, Amal S., Labib, Ammar A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688191/
https://www.ncbi.nlm.nih.gov/pubmed/36354440
http://dx.doi.org/10.3390/bios12110931
Descripción
Sumario:Background: The prostate-specific antigen (PSA) is an important cancer biomarker that is commonly utilized in the diagnosis of prostate cancer. The development of a PSA determination technique that is rapid, simple, and inexpensive, in addition to highly accurate, sensitive, and selective, remains a formidable obstacle. Methods: In this study, we developed a practical biosensor based on Zn(II) metal–organic framework nanoparticles (Zn-MOFs-NPs). Many spectroscopic and microanalytical tools are used to determine the structure, morphology, and physicochemical properties of the prepared MOF. Results: According to the results, Zn-MOFs-NPs are sensitive to PSA, selective to an extremely greater extent, and stable in terms of chemical composition. Furthermore, the Zn-MOFs-NPs did not exhibit any interferences from other common analytes that might cause interference. The detection limit for PSA was calculated and was 0.145 fg/mL throughout a wide linear concentration range (0.1 fg/mL–20 pg/mL). Conclusions: Zn-MOFs-NPs were successfully used as a growing biosensor for the monitoring and measurement of PSA in biological real samples.