Cargando…
Detection of Fall Risk in Multiple Sclerosis by Gait Analysis—An Innovative Approach Using Feature Selection Ensemble and Machine Learning Algorithms
One of the common causes of falls in people with Multiple Sclerosis (pwMS) is walking impairment. Therefore, assessment of gait is of importance in MS. Gait analysis and fall detection can take place in the clinical context using a wide variety of available methods. However, combining these methods...
Autores principales: | Schumann, Paula, Scholz, Maria, Trentzsch, Katrin, Jochim, Thurid, Śliwiński, Grzegorz, Malberg, Hagen, Ziemssen, Tjalf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688245/ https://www.ncbi.nlm.nih.gov/pubmed/36358403 http://dx.doi.org/10.3390/brainsci12111477 |
Ejemplares similares
-
Using Machine Learning Algorithms for Identifying Gait Parameters Suitable to Evaluate Subtle Changes in Gait in People with Multiple Sclerosis
por: Trentzsch, Katrin, et al.
Publicado: (2021) -
Visual Feedback and Postural Control in Multiple Sclerosis
por: Inojosa, Hernan, et al.
Publicado: (2020) -
Balance Testing in Multiple Sclerosis—Improving Neurological Assessment With Static Posturography?
por: Inojosa, Hernan, et al.
Publicado: (2020) -
Countermovement Jumps Detect Subtle Motor Deficits in People with Multiple Sclerosis below the Clinical Threshold
por: Geßner, Anne, et al.
Publicado: (2023) -
Improving Digital Patient Care: Lessons Learned from Patient-Reported and Expert-Reported Experience Measures for the Clinical Practice of Multidimensional Walking Assessment
por: Scholz, Maria, et al.
Publicado: (2021)