Cargando…
Two-Stage Deep Learning Model for Automated Segmentation and Classification of Splenomegaly
SIMPLE SUMMARY: Splenomegaly is a feature of a broad range of diseases including hematological malignancies and non-neoplastic conditions. However, the morphological appearance of an enlarged spleen alone does not necessarily reveal the underlying cause. The application of deep learning could delive...
Autores principales: | Meddeb, Aymen, Kossen, Tabea, Bressem, Keno K., Molinski, Noah, Hamm, Bernd, Nagel, Sebastian N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688308/ https://www.ncbi.nlm.nih.gov/pubmed/36428569 http://dx.doi.org/10.3390/cancers14225476 |
Ejemplares similares
-
Evaluation of a Deep Learning Algorithm for Automated Spleen Segmentation in Patients with Conditions Directly or Indirectly Affecting the Spleen
por: Meddeb, Aymen, et al.
Publicado: (2021) -
Comparing different deep learning architectures for classification of chest radiographs
por: Bressem, Keno K., et al.
Publicado: (2020) -
Comment on “Machine Learning for Early Detection of Hypoxic‑ischemic Brain Injury After Cardiac Arrest”
por: Molinski, Noah S., et al.
Publicado: (2022) -
Detection of mandibular fractures on panoramic radiographs using deep learning
por: Vinayahalingam, Shankeeth, et al.
Publicado: (2022) -
Changing the Patient’s Position: Pitfalls and Benefits for Radiation Dose and Image Quality of Computed Tomography in Polytrauma
por: Graef, Jessica, et al.
Publicado: (2022)