Cargando…
Deep Learning for Automated Elective Lymph Node Level Segmentation for Head and Neck Cancer Radiotherapy
SIMPLE SUMMARY: When treating patients with head-and-neck cancer (HNC), in addition to the primary tumour, commonly involved lymph node (LN) levels are often electively irradiated. This requires the definition of the elective LN target volume. Because the LN levels that will be included in the targe...
Autores principales: | Strijbis, Victor I. J., Dahele, Max, Gurney-Champion, Oliver J., Blom, Gerrit J., Vergeer, Marije R., Slotman, Berend J., Verbakel, Wilko F. A. R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688342/ https://www.ncbi.nlm.nih.gov/pubmed/36428593 http://dx.doi.org/10.3390/cancers14225501 |
Ejemplares similares
-
Dose distribution prediction for head-and-neck cancer radiotherapy using a generative adversarial network: influence of input data
por: Gu, Xiaojin, et al.
Publicado: (2023) -
Can knowledge-based DVH predictions be used for automated, individualized quality assurance of radiotherapy treatment plans?
por: Tol, Jim P., et al.
Publicado: (2015) -
Using Spatial Probability Maps to Highlight Potential Inaccuracies in Deep Learning-Based Contours: Facilitating Online Adaptive Radiation Therapy
por: van Rooij, Ward, et al.
Publicado: (2021) -
Evaluation of an Automated Proton Planning Solution
por: Delaney, Alexander R, et al.
Publicado: (2018) -
Strategies to improve deep learning-based salivary gland segmentation
por: van Rooij, Ward, et al.
Publicado: (2020)