Cargando…

Depletion of R270C Mutant p53 in Osteosarcoma Attenuates Cell Growth but Does Not Prevent Invasion and Metastasis In Vivo

Novel therapeutic targets are needed to better treat osteosarcoma, which is the most common bone malignancy. We previously developed mouse osteosarcoma cells, designated AX (accelerated bone formation) cells from bone marrow stromal cells. AX cells harbor both wild-type and mutant forms of p53 (R270...

Descripción completa

Detalles Bibliográficos
Autores principales: Shimizu, Takatsune, Sugihara, Eiji, Takeshima, Hideyuki, Nobusue, Hiroyuki, Yamaguchi, Rui, Yamaguchi-Iwai, Sayaka, Fukuchi, Yumi, Ushijima, Toshikazu, Muto, Akihiro, Saya, Hideyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688353/
https://www.ncbi.nlm.nih.gov/pubmed/36429043
http://dx.doi.org/10.3390/cells11223614
Descripción
Sumario:Novel therapeutic targets are needed to better treat osteosarcoma, which is the most common bone malignancy. We previously developed mouse osteosarcoma cells, designated AX (accelerated bone formation) cells from bone marrow stromal cells. AX cells harbor both wild-type and mutant forms of p53 (R270C in the DNA-binding domain, which is equivalent to human R273C). In this study, we showed that mutant p53 did not suppress the transcriptional activation function of wild-type p53 in AX cells. Notably, AXT cells, which are cells derived from tumors originating from AX cells, lost wild-type p53 expression, were devoid of the intact transcription activation function, and were resistant to doxorubicin. ChIP-seq analyses revealed that this mutant form of p53 bound to chromatin in the vicinity of the transcription start sites of various genes but exhibited a different binding profile from wild-type p53. The knockout of mutant p53 in AX and AXT cells by CRISPR–Cas9 attenuated tumor growth but did not affect the invasion of these cells. In addition, depletion of mutant p53 did not prevent metastasis in vivo. Therefore, the therapeutic potency targeting R270C (equivalent to human R273C) mutant p53 is limited in osteosarcoma. However, considering the heterogeneous nature of osteosarcoma, it is important to further evaluate the biological and clinical significance of mutant p53 in various cases.