Cargando…

Dual Response Site Fluorescent Probe for Highly Sensitive Detection of Cys/Hcy and GSH In Vivo through Two Different Emission Channels

Much research has demonstrated that metabolic imbalances of biothiols are closely associated with the emergence of different types of disease. In view of the significant effect of biothiols, quantitative evaluation and discrimination of intracellular Cys/Hcy and GSH in complex biological environment...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Huiling, Liu, Qi, Liu, Xiangbao, Fu, Shuang, Zhang, Hongguang, Li, Shuang, Chen, Song, Hou, Peng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688468/
https://www.ncbi.nlm.nih.gov/pubmed/36421174
http://dx.doi.org/10.3390/bios12111056
Descripción
Sumario:Much research has demonstrated that metabolic imbalances of biothiols are closely associated with the emergence of different types of disease. In view of the significant effect of biothiols, quantitative evaluation and discrimination of intracellular Cys/Hcy and GSH in complex biological environments is very important. In this study, probe CDS-NBD, synthesized by attaching 2,4-dinitrobenzenesulfonate (DNBS, site 1) and nitrobenzoxadiazole (NBD, site 2) as the highly sensitive and selective dual response site for thiols onto the coumarin derivative 7-hydroxycoumarin-4-acetic acid, exhibited large separation of the emission wavelengths, fast response, notable fluorescence enhancement, excellent sensitivity and selectivity to Cys/Hcy and GSH over other biological species. Additionally, CDS-NBD could make a distinction between two different fluorescent signals, GSH (an obvious blue fluorescence) and Cys/Hcy (a mixed blue-green fluorescence). Further study on imaging of Cys/Hcy and GSH in vivo by employing probe CDS-NBD could also be successfully achieved.