Cargando…
Toward Precision Radiotherapy: A Nonlinear Optimization Framework and an Accelerated Machine Learning Algorithm for the Deconvolution of Tumor-Infiltrating Immune Cells
Tumor-infiltrating immune cells (TIICs) form a critical part of the ecosystem surrounding a cancerous tumor. Recent advances in radiobiology have shown that, in addition to damaging cancerous cells, radiotherapy drives the upregulation of immunosuppressive and immunostimulatory TIICs, which in turn...
Autores principales: | Okereke, Lois Chinwendu, Bello, Abdulmalik Usman, Onwukwe, Emmanuel Akwari |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688486/ https://www.ncbi.nlm.nih.gov/pubmed/36429031 http://dx.doi.org/10.3390/cells11223604 |
Ejemplares similares
-
Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration
por: Wang, Zeya, et al.
Publicado: (2018) -
Deconvolution of metal apportionment in bulk metal-organic frameworks
por: Xu, Jun, et al.
Publicado: (2022) -
Uncertainty quantification of reference-based cellular deconvolution algorithms
por: Vellame, Dorothea Seiler, et al.
Publicado: (2022) -
An Optimal Subspace Deconvolution Algorithm for Robust and High-Resolution Beamforming
por: Su, Xiruo, et al.
Publicado: (2022) -
Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome
por: Zhang, Yingkun, et al.
Publicado: (2022)