Cargando…
Preclinical Models of Neuroendocrine Neoplasia
SIMPLE SUMMARY: Neuroendocrine neoplasia comprise many distinct and rare subtypes of cancers. Preclinical models are essential for improving understanding of these diseases because clinical data is scarce. We review available preclinical models across a wide spectrum of neuroendocrine neoplasia (inc...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688518/ https://www.ncbi.nlm.nih.gov/pubmed/36428741 http://dx.doi.org/10.3390/cancers14225646 |
Sumario: | SIMPLE SUMMARY: Neuroendocrine neoplasia comprise many distinct and rare subtypes of cancers. Preclinical models are essential for improving understanding of these diseases because clinical data is scarce. We review available preclinical models across a wide spectrum of neuroendocrine neoplasia (including those affecting the lungs, gastrointestinal system, prostate, and adrenal glands). We consider models of varying complexity and accuracy, covering both in vitro models such as cell lines and 3D models, and in vivo models such as xenografts and genetically-engineered mouse models. Better access and understanding of these models as provided in this work will help to enable research into pathology and treatment across the spectrum of neuroendocrine neoplasia. ABSTRACT: Neuroendocrine neoplasia (NENs) are a complex and heterogeneous group of cancers that can arise from neuroendocrine tissues throughout the body and differentiate them from other tumors. Their low incidence and high diversity make many of them orphan conditions characterized by a low incidence and few dedicated clinical trials. Study of the molecular and genetic nature of these diseases is limited in comparison to more common cancers and more dependent on preclinical models, including both in vitro models (such as cell lines and 3D models) and in vivo models (such as patient derived xenografts (PDXs) and genetically-engineered mouse models (GEMMs)). While preclinical models do not fully recapitulate the nature of these cancers in patients, they are useful tools in investigation of the basic biology and early-stage investigation for evaluation of treatments for these cancers. We review available preclinical models for each type of NEN and discuss their history as well as their current use and translation. |
---|