Cargando…
Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development
The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80–100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688574/ https://www.ncbi.nlm.nih.gov/pubmed/36429060 http://dx.doi.org/10.3390/cells11223629 |
_version_ | 1784836302758215680 |
---|---|
author | Bose, Meenakshi Farias Quipildor, Gabriela Ehrlich, Michelle E. Salton, Stephen R. |
author_facet | Bose, Meenakshi Farias Quipildor, Gabriela Ehrlich, Michelle E. Salton, Stephen R. |
author_sort | Bose, Meenakshi |
collection | PubMed |
description | The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80–100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including “undruggable” intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer’s, Parkinson’s), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them. |
format | Online Article Text |
id | pubmed-9688574 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96885742022-11-25 Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development Bose, Meenakshi Farias Quipildor, Gabriela Ehrlich, Michelle E. Salton, Stephen R. Cells Review The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80–100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including “undruggable” intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer’s, Parkinson’s), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them. MDPI 2022-11-16 /pmc/articles/PMC9688574/ /pubmed/36429060 http://dx.doi.org/10.3390/cells11223629 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Bose, Meenakshi Farias Quipildor, Gabriela Ehrlich, Michelle E. Salton, Stephen R. Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development |
title | Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development |
title_full | Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development |
title_fullStr | Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development |
title_full_unstemmed | Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development |
title_short | Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development |
title_sort | intranasal peptide therapeutics: a promising avenue for overcoming the challenges of traditional cns drug development |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688574/ https://www.ncbi.nlm.nih.gov/pubmed/36429060 http://dx.doi.org/10.3390/cells11223629 |
work_keys_str_mv | AT bosemeenakshi intranasalpeptidetherapeuticsapromisingavenueforovercomingthechallengesoftraditionalcnsdrugdevelopment AT fariasquipildorgabriela intranasalpeptidetherapeuticsapromisingavenueforovercomingthechallengesoftraditionalcnsdrugdevelopment AT ehrlichmichellee intranasalpeptidetherapeuticsapromisingavenueforovercomingthechallengesoftraditionalcnsdrugdevelopment AT saltonstephenr intranasalpeptidetherapeuticsapromisingavenueforovercomingthechallengesoftraditionalcnsdrugdevelopment |