Cargando…
Applying Deep Learning on a Few EEG Electrodes during Resting State Reveals Depressive States: A Data Driven Study
The growing number of depressive people and the overload in primary care services make it necessary to identify depressive states with easily accessible biomarkers such as mobile electroencephalography (EEG). Some studies have addressed this issue by collecting and analyzing EEG resting state in a s...
Autores principales: | Jan, Damián, de Vega, Manuel, López-Pigüi, Joana, Padrón, Iván |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688627/ https://www.ncbi.nlm.nih.gov/pubmed/36358432 http://dx.doi.org/10.3390/brainsci12111506 |
Ejemplares similares
-
TMS-EEG and resting-state EEG applied to altered states of consciousness: oscillations, complexity, and phenomenology
por: Ort, Andres, et al.
Publicado: (2023) -
Few-Electrode EEG from the Wearable Devices Using Domain Adaptation for Depression Detection
por: Wu, Wei, et al.
Publicado: (2022) -
Study of Resting-State Functional Connectivity Networks Using EEG Electrodes Position As Seed
por: Rojas, Gonzalo M., et al.
Publicado: (2018) -
Resting-state EEG signatures of Alzheimer’s disease are driven by periodic but not aperiodic changes
por: Kopčanová, Martina, et al.
Publicado: (2023) -
A test-retest resting, and cognitive state EEG dataset during multiple subject-driven states
por: Wang, Yulin, et al.
Publicado: (2022)