Cargando…
Genomic and Transcriptomic Predictors of Response to Immune Checkpoint Inhibitors in Melanoma Patients: A Machine Learning Approach
SIMPLE SUMMARY: Our work provides novel transcriptomic biomarkers that can accurately predict immune checkpoint inhibitors (ICIs) response in melanoma patients. Using a bioinformatics analysis and supervised machine learning approach, we developed four random-forest classifiers based on clinical, ge...
Autores principales: | Ahmed, Yaman B., Al-Bzour, Ayah N., Ababneh, Obada E., Abushukair, Hassan M., Saeed, Anwaar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688789/ https://www.ncbi.nlm.nih.gov/pubmed/36428698 http://dx.doi.org/10.3390/cancers14225605 |
Ejemplares similares
-
Cancer-Associated Fibroblasts in Gastrointestinal Cancers: Unveiling Their Dynamic Roles in the Tumor Microenvironment
por: Al-Bzour, Noor N., et al.
Publicado: (2023) -
Hepatocellular carcinoma and immunotherapy: Beyond immune checkpoint inhibitors
por: Abushukair, Hassan Mohammed, et al.
Publicado: (2022) -
The Use of Bruton Tyrosine Kinase Inhibitors in Waldenström’s Macroglobulinemia
por: Ababneh, Obada, et al.
Publicado: (2022) -
Artificial Intelligence and Machine Learning Applications in Sudden Cardiac Arrest Prediction and Management: A Comprehensive Review
por: Aqel, Sarah, et al.
Publicado: (2023) -
Predicting the Stone-Free Status of Percutaneous Nephrolithotomy with the Machine Learning System
por: AlAzab, Rami, et al.
Publicado: (2023)