Cargando…
A Novel Deep Learning Method Based on an Overlapping Time Window Strategy for Brain–Computer Interface-Based Stroke Rehabilitation
Globally, stroke is a leading cause of death and disability. The classification of motor intentions using brain activity is an important task in the rehabilitation of stroke patients using brain–computer interfaces (BCIs). This paper presents a new method for model training in EEG-based BCI rehabili...
Autores principales: | Cao, Lei, Wu, Hailiang, Chen, Shugeng, Dong, Yilin, Zhu, Changming, Jia, Jie, Fan, Chunjiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688819/ https://www.ncbi.nlm.nih.gov/pubmed/36358428 http://dx.doi.org/10.3390/brainsci12111502 |
Ejemplares similares
-
Sensorimotor Rhythm-Based Brain–Computer Interfaces for Motor Tasks Used in Hand Upper Extremity Rehabilitation after Stroke: A Systematic Review
por: Fu, Jianghong, et al.
Publicado: (2022) -
An Inter- and Intra-Subject Transfer Calibration Scheme for Improving Feedback Performance of Sensorimotor Rhythm-Based BCI Rehabilitation
por: Cao, Lei, et al.
Publicado: (2021) -
Rehabilitation Treatment of Motor Dysfunction Patients Based on Deep Learning Brain–Computer Interface Technology
por: Wang, Huihai, et al.
Publicado: (2020) -
Brain–computer interface treatment for gait rehabilitation in stroke patients
por: Sebastián-Romagosa, Marc, et al.
Publicado: (2023) -
Overlapped Partitioning for Ensemble Classifiers of P300-Based Brain-Computer Interfaces
por: Onishi, Akinari, et al.
Publicado: (2014)