Cargando…
Underwater Acoustic Target Recognition Based on Attention Residual Network
Underwater acoustic target recognition is very complex due to the lack of labeled data sets, the complexity of the marine environment, and the interference of background noise. In order to enhance it, we propose an attention-based residual network recognition method (AResnet). The method can be used...
Autores principales: | Li, Juan, Wang, Baoxiang, Cui, Xuerong, Li, Shibao, Liu, Jianhang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688950/ https://www.ncbi.nlm.nih.gov/pubmed/36421512 http://dx.doi.org/10.3390/e24111657 |
Ejemplares similares
-
Underwater Acoustic Target Recognition Based on Depthwise Separable Convolution Neural Networks
por: Hu, Gang, et al.
Publicado: (2021) -
Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2018) -
Underwater acoustic target recognition method based on a joint neural network
por: Han, Xing Cheng, et al.
Publicado: (2022) -
Deep convolution stack for waveform in underwater acoustic target recognition
por: Tian, Shengzhao, et al.
Publicado: (2021) -
Underwater Acoustic Target Recognition Based on Supervised Feature-Separation Algorithm
por: Ke, Xiaoquan, et al.
Publicado: (2018)