Cargando…
Node Deployment Optimization for Wireless Sensor Networks Based on Virtual Force-Directed Particle Swarm Optimization Algorithm and Evidence Theory
Wireless sensor network deployment should be optimized to maximize network coverage. The D-S evidence theory is an effective means of information fusion that can handle not only uncertainty and inconsistency, but also ambiguity and instability. This work develops a node sensing probability model bas...
Autores principales: | Wu, Liangshun, Qu, Junsuo, Shi, Haonan, Li, Pengfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688961/ https://www.ncbi.nlm.nih.gov/pubmed/36421492 http://dx.doi.org/10.3390/e24111637 |
Ejemplares similares
-
Node Self-Deployment Algorithm Based on Pigeon Swarm Optimization for Underwater Wireless Sensor Networks
por: Yu, Shanen, et al.
Publicado: (2017) -
An Optimized Node Deployment Solution Based on a Virtual Spring Force Algorithm for Wireless Sensor Network Applications
por: Deng, Xiaohua, et al.
Publicado: (2019) -
An Improved Co-evolutionary Particle Swarm Optimization for Wireless Sensor Networks with Dynamic Deployment
por: Wang, Xue, et al.
Publicado: (2007) -
Node deployment optimization of underwater wireless sensor networks using intelligent optimization algorithm and robot collaboration
por: Zhang, Yangmei, et al.
Publicado: (2023) -
Optimizing Sensor Deployment for Multi-Sensor-Based HAR System with Improved Glowworm Swarm Optimization Algorithm
por: Tian, Yiming, et al.
Publicado: (2020)