Cargando…
Bearing Fault Diagnosis Method Based on RCMFDE-SPLR and Ocean Predator Algorithm Optimizing Support Vector Machine
For the problem that rolling bearing fault characteristics are difficult to extract accurately and the fault diagnosis accuracy is not high, an unsupervised characteristic selection method of refined composite multiscale fluctuation-based dispersion entropy (RCMFDE) combined with self-paced learning...
Autores principales: | Yi, Mingxiu, Zhou, Chengjiang, Yang, Limiao, Yang, Jintao, Tang, Tong, Jia, Yunhua, Yuan, Xuyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688966/ https://www.ncbi.nlm.nih.gov/pubmed/36421551 http://dx.doi.org/10.3390/e24111696 |
Ejemplares similares
-
Rolling Bearing Fault Diagnosis Based on Support Vector Machine Optimized by Improved Grey Wolf Algorithm
por: Shen, Weijie, et al.
Publicado: (2023) -
An arc fault diagnosis algorithm using multiinformation fusion and support vector machines
por: Yang, Jian-hong, et al.
Publicado: (2018) -
A Low-Power Analog Integrated Implementation of the Support Vector Machine Algorithm with On-Chip Learning Tested on a Bearing Fault Application
por: Alimisis, Vassilis, et al.
Publicado: (2023) -
Research on Twin Extreme Learning Fault Diagnosis Method Based on Multi-Scale Weighted Permutation Entropy
por: Yuan, Xuyi, et al.
Publicado: (2022) -
Bearing Fault Diagnosis of Induction Motors Using a Genetic Algorithm and Machine Learning Classifiers
por: Toma, Rafia Nishat, et al.
Publicado: (2020)