Cargando…
Deep Learning and Entropy-Based Texture Features for Color Image Classification
In the domain of computer vision, entropy—defined as a measure of irregularity—has been proposed as an effective method for analyzing the texture of images. Several studies have shown that, with specific parameter tuning, entropy-based approaches achieve high accuracy in terms of classification resu...
Autores principales: | Lhermitte, Emma, Hilal, Mirvana, Furlong, Ryan, O’Brien, Vincent, Humeau-Heurtier, Anne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9688970/ https://www.ncbi.nlm.nih.gov/pubmed/36359667 http://dx.doi.org/10.3390/e24111577 |
Ejemplares similares
-
Parameter Analysis of Multiscale Two-Dimensional Fuzzy and Dispersion Entropy Measures Using Machine Learning Classification
por: Furlong, Ryan, et al.
Publicado: (2021) -
Colored Texture Analysis Fuzzy Entropy Methods with a Dermoscopic Application
por: Hilal, Mirvana, et al.
Publicado: (2022) -
Evaluation of COVID-19 chest computed tomography: A texture analysis based on three-dimensional entropy()
por: Gaudêncio, Andreia S., et al.
Publicado: (2021) -
Multiscale Entropy Approaches and Their Applications
por: Humeau-Heurtier, Anne
Publicado: (2020) -
Centered and Averaged Fuzzy Entropy to Improve Fuzzy Entropy Precision
por: Girault, Jean-Marc, et al.
Publicado: (2018)