Cargando…
Quantum Information Entropy of Hyperbolic Potentials in Fractional Schrödinger Equation
In this work we have studied the Shannon information entropy for two hyperbolic single-well potentials in the fractional Schrödinger equation (the fractional derivative number [Formula: see text] by calculating position and momentum entropy. We find that the wave function will move towards the origi...
Autores principales: | Santana-Carrillo, R., González-Flores, Jesus S., Magaña-Espinal, Emilio, Quezada, Luis F., Sun, Guo-Hua, Dong, Shi-Hai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689018/ https://www.ncbi.nlm.nih.gov/pubmed/36359609 http://dx.doi.org/10.3390/e24111516 |
Ejemplares similares
-
Quantum Information Entropy for a Hyperbolic Double Well Potential in the Fractional Schrödinger Equation
por: Santana-Carrillo, R., et al.
Publicado: (2023) -
Quantum Information Entropies on Hyperbolic Single Potential Wells
por: Gil-Barrera, Carlos Ariel, et al.
Publicado: (2022) -
Quantum Information Entropy for Another Class of New Proposed Hyperbolic Potentials
por: Santana-Carrillo, R., et al.
Publicado: (2023) -
Evolution Equations of Hyperbolic and Schrödinger Type: Asymptotics, Estimates and Nonlinearities
por: Ruzhansky, Michael, et al.
Publicado: (2012) -
Diffraction-free beams in fractional Schrödinger equation
por: Zhang, Yiqi, et al.
Publicado: (2016)