Cargando…
HRU-Net: A Transfer Learning Method for Carotid Artery Plaque Segmentation in Ultrasound Images
Carotid artery stenotic plaque segmentation in ultrasound images is a crucial means for the analysis of plaque components and vulnerability. However, segmentation of severe stenotic plaques remains a challenging task because of the heterogeneities of inter-plaques and intra-plaques, and obscure boun...
Autores principales: | Yuan, Yanchao, Li, Cancheng, Zhang, Ke, Hua, Yang, Zhang, Jicong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689104/ https://www.ncbi.nlm.nih.gov/pubmed/36428911 http://dx.doi.org/10.3390/diagnostics12112852 |
Ejemplares similares
-
FRDD-Net: Automated Carotid Plaque Ultrasound Images Segmentation Using Feature Remapping and Dense Decoding
por: Li, Yanhan, et al.
Publicado: (2022) -
The application of the nnU-Net-based automatic segmentation model in assisting carotid artery stenosis and carotid atherosclerotic plaque evaluation
por: Zhu, Ying, et al.
Publicado: (2022) -
SA-Net: A scale-attention network for medical image segmentation
por: Hu, Jingfei, et al.
Publicado: (2021) -
Associations of plaque morphology and location with Intraplaque neovascularization in the carotid artery by contrast-enhanced ultrasound imaging
por: Gu, Shi-Yao, et al.
Publicado: (2023) -
Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10
por: Anmarkrud, Jarl A, et al.
Publicado: (2008)