Cargando…

An Enhanced Machine Learning Approach for Brain MRI Classification

Magnetic Resonance Imaging (MRI) is a noninvasive technique used in medical imaging to diagnose a variety of disorders. The majority of previous systems performed well on MRI datasets with a small number of images, but their performance deteriorated when applied to large MRI datasets. Therefore, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Siddiqi, Muhammad Hameed, Azad, Mohammad, Alhwaiti, Yousef
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689115/
https://www.ncbi.nlm.nih.gov/pubmed/36428850
http://dx.doi.org/10.3390/diagnostics12112791
_version_ 1784836447086313472
author Siddiqi, Muhammad Hameed
Azad, Mohammad
Alhwaiti, Yousef
author_facet Siddiqi, Muhammad Hameed
Azad, Mohammad
Alhwaiti, Yousef
author_sort Siddiqi, Muhammad Hameed
collection PubMed
description Magnetic Resonance Imaging (MRI) is a noninvasive technique used in medical imaging to diagnose a variety of disorders. The majority of previous systems performed well on MRI datasets with a small number of images, but their performance deteriorated when applied to large MRI datasets. Therefore, the objective is to develop a quick and trustworthy classification system that can sustain the best performance over a comprehensive MRI dataset. This paper presents a robust approach that has the ability to analyze and classify different types of brain diseases using MRI images. In this paper, global histogram equalization is utilized to remove unwanted details from the MRI images. After the picture has been enhanced, a symlet wavelet transform-based technique has been suggested that can extract the best features from the MRI images for feature extraction. On gray scale images, the suggested feature extraction approach is a compactly supported wavelet with the lowest asymmetry and the most vanishing moments for a given support width. Because the symlet wavelet can accommodate the orthogonal, biorthogonal, and reverse biorthogonal features of gray scale images, it delivers higher classification results. Following the extraction of the best feature, the linear discriminant analysis (LDA) is employed to minimize the feature space’s dimensions. The model was trained and evaluated using logistic regression, and it correctly classified several types of brain illnesses based on MRI pictures. To illustrate the importance of the proposed strategy, a standard dataset from Harvard Medical School and the Open Access Series of Imaging Studies (OASIS), which encompasses 24 different brain disorders (including normal), is used. The proposed technique achieved the best classification accuracy of 96.6% when measured against current cutting-edge systems.
format Online
Article
Text
id pubmed-9689115
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96891152022-11-25 An Enhanced Machine Learning Approach for Brain MRI Classification Siddiqi, Muhammad Hameed Azad, Mohammad Alhwaiti, Yousef Diagnostics (Basel) Article Magnetic Resonance Imaging (MRI) is a noninvasive technique used in medical imaging to diagnose a variety of disorders. The majority of previous systems performed well on MRI datasets with a small number of images, but their performance deteriorated when applied to large MRI datasets. Therefore, the objective is to develop a quick and trustworthy classification system that can sustain the best performance over a comprehensive MRI dataset. This paper presents a robust approach that has the ability to analyze and classify different types of brain diseases using MRI images. In this paper, global histogram equalization is utilized to remove unwanted details from the MRI images. After the picture has been enhanced, a symlet wavelet transform-based technique has been suggested that can extract the best features from the MRI images for feature extraction. On gray scale images, the suggested feature extraction approach is a compactly supported wavelet with the lowest asymmetry and the most vanishing moments for a given support width. Because the symlet wavelet can accommodate the orthogonal, biorthogonal, and reverse biorthogonal features of gray scale images, it delivers higher classification results. Following the extraction of the best feature, the linear discriminant analysis (LDA) is employed to minimize the feature space’s dimensions. The model was trained and evaluated using logistic regression, and it correctly classified several types of brain illnesses based on MRI pictures. To illustrate the importance of the proposed strategy, a standard dataset from Harvard Medical School and the Open Access Series of Imaging Studies (OASIS), which encompasses 24 different brain disorders (including normal), is used. The proposed technique achieved the best classification accuracy of 96.6% when measured against current cutting-edge systems. MDPI 2022-11-14 /pmc/articles/PMC9689115/ /pubmed/36428850 http://dx.doi.org/10.3390/diagnostics12112791 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Siddiqi, Muhammad Hameed
Azad, Mohammad
Alhwaiti, Yousef
An Enhanced Machine Learning Approach for Brain MRI Classification
title An Enhanced Machine Learning Approach for Brain MRI Classification
title_full An Enhanced Machine Learning Approach for Brain MRI Classification
title_fullStr An Enhanced Machine Learning Approach for Brain MRI Classification
title_full_unstemmed An Enhanced Machine Learning Approach for Brain MRI Classification
title_short An Enhanced Machine Learning Approach for Brain MRI Classification
title_sort enhanced machine learning approach for brain mri classification
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689115/
https://www.ncbi.nlm.nih.gov/pubmed/36428850
http://dx.doi.org/10.3390/diagnostics12112791
work_keys_str_mv AT siddiqimuhammadhameed anenhancedmachinelearningapproachforbrainmriclassification
AT azadmohammad anenhancedmachinelearningapproachforbrainmriclassification
AT alhwaitiyousef anenhancedmachinelearningapproachforbrainmriclassification
AT siddiqimuhammadhameed enhancedmachinelearningapproachforbrainmriclassification
AT azadmohammad enhancedmachinelearningapproachforbrainmriclassification
AT alhwaitiyousef enhancedmachinelearningapproachforbrainmriclassification