Cargando…
Equilibrium and Non-Equilibrium Lattice Dynamics of Anharmonic Systems
In this review, motivated by the recent interest in high-temperature materials, we review our recent progress in theories of lattice dynamics in and out of equilibrium. To investigate thermodynamic properties of anharmonic crystals, the self-consistent phonon theory was developed, mainly in the 1960...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689135/ https://www.ncbi.nlm.nih.gov/pubmed/36359675 http://dx.doi.org/10.3390/e24111585 |
Sumario: | In this review, motivated by the recent interest in high-temperature materials, we review our recent progress in theories of lattice dynamics in and out of equilibrium. To investigate thermodynamic properties of anharmonic crystals, the self-consistent phonon theory was developed, mainly in the 1960s, for rare gas atoms and quantum crystals. We have extended this theory to investigate the properties of the equilibrium state of a crystal, including its unit cell shape and size, atomic positions and lattice dynamical properties. Using the equation-of-motion method combined with the fluctuation–dissipation theorem and the Donsker–Furutsu–Novikov (DFN) theorem, this approach was also extended to investigate the non-equilibrium case where there is heat flow across a junction or an interface. The formalism is a classical one and therefore valid at high temperatures. |
---|