Cargando…
Spatial Prediction of Current and Future Flood Susceptibility: Examining the Implications of Changing Climates on Flood Susceptibility Using Machine Learning Models
The main aim of this study was to predict current and future flood susceptibility under three climate change scenarios of RCP2.6 (i.e., optimistic), RCP4.5 (i.e., business as usual), and RCP8.5 (i.e., pessimistic) employing four machine learning models, including Gradient Boosting Machine (GBM), Ran...
Autores principales: | Mahdizadeh Gharakhanlou, Navid, Perez, Liliana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689156/ https://www.ncbi.nlm.nih.gov/pubmed/36359720 http://dx.doi.org/10.3390/e24111630 |
Ejemplares similares
-
Assessing the susceptibility of schools to flood events in Iran
por: Yousefi, Saleh, et al.
Publicado: (2020) -
Artificial neural network for flood susceptibility mapping in Bangladesh
por: Rudra, Rhyme Rubayet, et al.
Publicado: (2023) -
Floods, droughts, and climate change /
por: Collier, Michael, 1950-
Publicado: (2002) -
Floods and flood management
por: Saul, A
Publicado: (1992) -
Development of novel hybridized models for urban flood susceptibility mapping
por: Rahmati, Omid, et al.
Publicado: (2020)