Cargando…

Differential Expression of Genes Related to Growth and Aflatoxin Synthesis in Aspergillus flavus When Inhibited by Bacillus velezensis Strain B2

Aspergillus flavus is a saprophytic soil fungus that infects and contaminates seed crops with the highly carcinogenic aflatoxin, which brings health hazards to animals and humans. In this study, bacterial strains B1 and B2 isolated from the rhizosphere soil of camellia sinensis had significant antag...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Qiaoyun, Li, Huanhuan, Wang, Sunxing, Zhang, Zhongnian, Zhang, Zhipeng, Jin, Tuwei, Hu, Xiufang, Zeng, Guohong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689179/
https://www.ncbi.nlm.nih.gov/pubmed/36429212
http://dx.doi.org/10.3390/foods11223620
Descripción
Sumario:Aspergillus flavus is a saprophytic soil fungus that infects and contaminates seed crops with the highly carcinogenic aflatoxin, which brings health hazards to animals and humans. In this study, bacterial strains B1 and B2 isolated from the rhizosphere soil of camellia sinensis had significant antagonistic activities against A. flavus. Based on the phylogenetic analysis of 16SrDNA gene sequence, bacterial strains B1 and B2 were identified as Bacillus tequilensis and Bacillus velezensis, respectively. In addition, the transcriptome analysis showed that some genes related to A. flavus growth and aflatoxin synthesis were differential expressed and 16 genes in the aflatoxin synthesis gene cluster showed down-regulation trends when inhibited by Bacillus velezensis strain B2. We guessed that the Bacillus velezensis strain B2 may secrete some secondary metabolites, which regulate the related gene transcription of A. flavus to inhibit growth and aflatoxin production. In summary, this work provided the foundation for the more effective biocontrol of A. flavus infection and aflatoxin contamination by the determination of differential expression of genes related to growth and aflatoxin synthesis in A. flavus when inhibited by B. velezensis strain B2.