Cargando…
BHGAttN: A Feature-Enhanced Hierarchical Graph Attention Network for Sentiment Analysis
Recently, with the rise of deep learning, text classification techniques have developed rapidly. However, the existing work usually takes the entire text as the modeling object and pays less attention to the hierarchical structure within the text, ignoring the internal connection between the upper a...
Autores principales: | Zhang, Junjun, Cui, Zhengyan, Park, Hyun Jun, Noh, Giseop |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689255/ https://www.ncbi.nlm.nih.gov/pubmed/36421546 http://dx.doi.org/10.3390/e24111691 |
Ejemplares similares
-
ADSTGCN: A Dynamic Adaptive Deeper Spatio-Temporal Graph Convolutional Network for Multi-Step Traffic Forecasting
por: Cui, Zhengyan, et al.
Publicado: (2023) -
Graph convolutional networks with hierarchical multi-head attention for aspect-level sentiment classification
por: Li, Xiaowen, et al.
Publicado: (2022) -
Recipe Recommendation With Hierarchical Graph Attention Network
por: Tian, Yijun, et al.
Publicado: (2022) -
Multimodal Sentiment Analysis Based on Cross-Modal Attention and Gated Cyclic Hierarchical Fusion Networks
por: Quan, Zhibang, et al.
Publicado: (2022) -
Dynamic Heterogeneous Graph Embedding Using Hierarchical Attentions
por: Yang, Luwei, et al.
Publicado: (2020)