Cargando…
Relative Entropy, Gaussian Concentration and Uniqueness of Equilibrium States
For a general class of lattice spin systems, we prove that an abstract Gaussian concentration bound implies positivity of the lower relative entropy density. As a consequence, we obtain uniqueness of translation-invariant Gibbs measures from the Gaussian concentration bound in this general setting....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689258/ https://www.ncbi.nlm.nih.gov/pubmed/36359606 http://dx.doi.org/10.3390/e24111513 |
_version_ | 1784836486034620416 |
---|---|
author | Chazottes, Jean-René Redig, Frank |
author_facet | Chazottes, Jean-René Redig, Frank |
author_sort | Chazottes, Jean-René |
collection | PubMed |
description | For a general class of lattice spin systems, we prove that an abstract Gaussian concentration bound implies positivity of the lower relative entropy density. As a consequence, we obtain uniqueness of translation-invariant Gibbs measures from the Gaussian concentration bound in this general setting. This extends earlier results with a different and very short proof. |
format | Online Article Text |
id | pubmed-9689258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-96892582022-11-25 Relative Entropy, Gaussian Concentration and Uniqueness of Equilibrium States Chazottes, Jean-René Redig, Frank Entropy (Basel) Article For a general class of lattice spin systems, we prove that an abstract Gaussian concentration bound implies positivity of the lower relative entropy density. As a consequence, we obtain uniqueness of translation-invariant Gibbs measures from the Gaussian concentration bound in this general setting. This extends earlier results with a different and very short proof. MDPI 2022-10-24 /pmc/articles/PMC9689258/ /pubmed/36359606 http://dx.doi.org/10.3390/e24111513 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chazottes, Jean-René Redig, Frank Relative Entropy, Gaussian Concentration and Uniqueness of Equilibrium States |
title | Relative Entropy, Gaussian Concentration and Uniqueness of Equilibrium States |
title_full | Relative Entropy, Gaussian Concentration and Uniqueness of Equilibrium States |
title_fullStr | Relative Entropy, Gaussian Concentration and Uniqueness of Equilibrium States |
title_full_unstemmed | Relative Entropy, Gaussian Concentration and Uniqueness of Equilibrium States |
title_short | Relative Entropy, Gaussian Concentration and Uniqueness of Equilibrium States |
title_sort | relative entropy, gaussian concentration and uniqueness of equilibrium states |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689258/ https://www.ncbi.nlm.nih.gov/pubmed/36359606 http://dx.doi.org/10.3390/e24111513 |
work_keys_str_mv | AT chazottesjeanrene relativeentropygaussianconcentrationanduniquenessofequilibriumstates AT redigfrank relativeentropygaussianconcentrationanduniquenessofequilibriumstates |