Cargando…
Research on Insulator Defect Detection Based on an Improved MobilenetV1-YOLOv4
Insulator devices are important for transmission lines, and defects such as insulator bursting and string loss affect the safety of transmission lines. In this study, we aim to investigate the problems of slow detection speed and low efficiency of traditional insulator defect detection algorithms, a...
Autores principales: | Xu, Shanyong, Deng, Jicheng, Huang, Yourui, Ling, Liuyi, Han, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689300/ https://www.ncbi.nlm.nih.gov/pubmed/36359678 http://dx.doi.org/10.3390/e24111588 |
Ejemplares similares
-
Fast Detection of Defective Insulator Based on Improved YOLOv5s
por: Liquan, Zhao, et al.
Publicado: (2022) -
Insulator-Defect Detection Algorithm Based on Improved YOLOv7
por: Zheng, Jianfeng, et al.
Publicado: (2022) -
YOLOv4-Tiny-Based Coal Gangue Image Recognition and FPGA Implementation
por: Xu, Shanyong, et al.
Publicado: (2022) -
Detection of railway catenary insulator defects based on improved YOLOv5s
por: Tang, Jing, et al.
Publicado: (2023) -
Image Recognition of Wind Turbine Blade Defects Using Attention-Based MobileNetv1-YOLOv4 and Transfer Learning
por: Zhang, Chen, et al.
Publicado: (2022)