Cargando…
Configurations of Proto-Cell Aggregates with Anisotropy: Gravity Promotes Complexity in Theoretical Biology
This contribution considers proto-cell structures associated with asymmetries, mainly gravity, in the framework of reaction–diffusion. There are equivalent solutions for defined morphogen parameters in the equations that allow for defining proto-tissue complexity and configurational entropy. Using R...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689301/ https://www.ncbi.nlm.nih.gov/pubmed/36359690 http://dx.doi.org/10.3390/e24111598 |
Sumario: | This contribution considers proto-cell structures associated with asymmetries, mainly gravity, in the framework of reaction–diffusion. There are equivalent solutions for defined morphogen parameters in the equations that allow for defining proto-tissue complexity and configurational entropy. Using RNA data, improvements to the complexity and entropy due to the Earth’s gravity are presented. The theoretical proto-tissues complexity estimation, as a function of arbitrary surface gravity, is likewise proposed. In this sense, hypothetical aggregates of proto-cells on Mars would have a lower complexity than on Earth, which is equally valid for the Moon. Massive planets, or exoplanets like BD+20594b, could have major proto-tissue complexity and, eventually, rich biodiversity. |
---|