Cargando…
A Semi-Supervised Machine Learning Approach in Predicting High-Risk Pregnancies in the Philippines
Early risk tagging is crucial in maternal health, especially because it threatens both the mother and the long-term development of the baby. By tagging high-risk pregnancies, mothers would be given extra care before, during, and after pregnancies, thus reducing the risk of complications. In the Phil...
Autores principales: | Macrohon, Julio Jerison E., Villavicencio, Charlyn Nayve, Inbaraj, X. Alphonse, Jeng, Jyh-Horng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689356/ https://www.ncbi.nlm.nih.gov/pubmed/36428842 http://dx.doi.org/10.3390/diagnostics12112782 |
Ejemplares similares
-
Development of a Machine Learning Based Web Application for Early Diagnosis of COVID-19 Based on Symptoms
por: Villavicencio, Charlyn Nayve, et al.
Publicado: (2022) -
Semi-supervised and unsupervised machine learning: novel strategies
por: Albalate, Amparo, et al.
Publicado: (2011) -
Comparing supervised and semi-supervised Machine Learning Models on Diagnosing Breast Cancer
por: Al-Azzam, Nosayba, et al.
Publicado: (2021) -
Semi-supervised learning /
Publicado: (2010) -
A semi-supervised machine learning framework for microRNA classification
por: Sheikh Hassani, Mohsen, et al.
Publicado: (2019)