Cargando…

Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT)

Electrical properties (EPs) of tissues facilitate early detection of cancerous tissues. Magnetic resonance electrical properties tomography (MREPT) is a technique to non-invasively probe the EPs of tissues from MRI measurements. Most MREPT methods rely on numerical differentiation (ND) to solve part...

Descripción completa

Detalles Bibliográficos
Autores principales: Inda, Adan Jafet Garcia, Huang, Shao Ying, İmamoğlu, Nevrez, Qin, Ruian, Yang, Tianyi, Chen, Tiao, Yuan, Zilong, Yu, Wenwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689361/
https://www.ncbi.nlm.nih.gov/pubmed/36359471
http://dx.doi.org/10.3390/diagnostics12112627
_version_ 1784836513934082048
author Inda, Adan Jafet Garcia
Huang, Shao Ying
İmamoğlu, Nevrez
Qin, Ruian
Yang, Tianyi
Chen, Tiao
Yuan, Zilong
Yu, Wenwei
author_facet Inda, Adan Jafet Garcia
Huang, Shao Ying
İmamoğlu, Nevrez
Qin, Ruian
Yang, Tianyi
Chen, Tiao
Yuan, Zilong
Yu, Wenwei
author_sort Inda, Adan Jafet Garcia
collection PubMed
description Electrical properties (EPs) of tissues facilitate early detection of cancerous tissues. Magnetic resonance electrical properties tomography (MREPT) is a technique to non-invasively probe the EPs of tissues from MRI measurements. Most MREPT methods rely on numerical differentiation (ND) to solve partial differential Equations (PDEs) to reconstruct the EPs. However, they are not practical for clinical data because ND is noise sensitive and the MRI measurements for MREPT are noisy in nature. Recently, Physics informed neural networks (PINNs) have been introduced to solve PDEs by substituting ND with automatic differentiation (AD). To the best of our knowledge, it has not been applied to MREPT due to the challenges in using PINN on MREPT as (i) a PINN requires part of ground-truth EPs as collocation points to optimize the network’s AD, (ii) the noisy input data disrupts the optimization of PINNs despite the noise-filtering nature of NNs and additional denoising processes. In this work, we propose a PINN-MREPT model based on a canonical analytic MREPT model. A reference padding layer with known EPs was added to surround the region of interest for providing additive collocation points. Moreover, an optimizable diffusion coefficient was embedded in the analytic MREPT model used in the PINN-MREPT. The noise robustness of the proposed PINN-MREPT for single-sample reconstruction was tested by using numerical phantoms of human brain with extra tumor-like tissues at different noise levels. The results of numerical experiments show that PINN-MREPT outperforms two typical numerical MREPT methods in terms of reconstruction accuracy, sensitivity to the extra tissues, and the correlations of line profiles in the regions of interest. The advantage of the PINN-MREPT is shown by the results of an experiment on phantom measurement, too. Moreover, it is found that the diffusion term plays an important role to achieve a noise-robust PINN-MREPT. This is an important step moving forward to a clinical application of MREPT.
format Online
Article
Text
id pubmed-9689361
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96893612022-11-25 Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT) Inda, Adan Jafet Garcia Huang, Shao Ying İmamoğlu, Nevrez Qin, Ruian Yang, Tianyi Chen, Tiao Yuan, Zilong Yu, Wenwei Diagnostics (Basel) Article Electrical properties (EPs) of tissues facilitate early detection of cancerous tissues. Magnetic resonance electrical properties tomography (MREPT) is a technique to non-invasively probe the EPs of tissues from MRI measurements. Most MREPT methods rely on numerical differentiation (ND) to solve partial differential Equations (PDEs) to reconstruct the EPs. However, they are not practical for clinical data because ND is noise sensitive and the MRI measurements for MREPT are noisy in nature. Recently, Physics informed neural networks (PINNs) have been introduced to solve PDEs by substituting ND with automatic differentiation (AD). To the best of our knowledge, it has not been applied to MREPT due to the challenges in using PINN on MREPT as (i) a PINN requires part of ground-truth EPs as collocation points to optimize the network’s AD, (ii) the noisy input data disrupts the optimization of PINNs despite the noise-filtering nature of NNs and additional denoising processes. In this work, we propose a PINN-MREPT model based on a canonical analytic MREPT model. A reference padding layer with known EPs was added to surround the region of interest for providing additive collocation points. Moreover, an optimizable diffusion coefficient was embedded in the analytic MREPT model used in the PINN-MREPT. The noise robustness of the proposed PINN-MREPT for single-sample reconstruction was tested by using numerical phantoms of human brain with extra tumor-like tissues at different noise levels. The results of numerical experiments show that PINN-MREPT outperforms two typical numerical MREPT methods in terms of reconstruction accuracy, sensitivity to the extra tissues, and the correlations of line profiles in the regions of interest. The advantage of the PINN-MREPT is shown by the results of an experiment on phantom measurement, too. Moreover, it is found that the diffusion term plays an important role to achieve a noise-robust PINN-MREPT. This is an important step moving forward to a clinical application of MREPT. MDPI 2022-10-29 /pmc/articles/PMC9689361/ /pubmed/36359471 http://dx.doi.org/10.3390/diagnostics12112627 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Inda, Adan Jafet Garcia
Huang, Shao Ying
İmamoğlu, Nevrez
Qin, Ruian
Yang, Tianyi
Chen, Tiao
Yuan, Zilong
Yu, Wenwei
Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT)
title Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT)
title_full Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT)
title_fullStr Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT)
title_full_unstemmed Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT)
title_short Physics Informed Neural Networks (PINN) for Low Snr Magnetic Resonance Electrical Properties Tomography (MREPT)
title_sort physics informed neural networks (pinn) for low snr magnetic resonance electrical properties tomography (mrept)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689361/
https://www.ncbi.nlm.nih.gov/pubmed/36359471
http://dx.doi.org/10.3390/diagnostics12112627
work_keys_str_mv AT indaadanjafetgarcia physicsinformedneuralnetworkspinnforlowsnrmagneticresonanceelectricalpropertiestomographymrept
AT huangshaoying physicsinformedneuralnetworkspinnforlowsnrmagneticresonanceelectricalpropertiestomographymrept
AT imamoglunevrez physicsinformedneuralnetworkspinnforlowsnrmagneticresonanceelectricalpropertiestomographymrept
AT qinruian physicsinformedneuralnetworkspinnforlowsnrmagneticresonanceelectricalpropertiestomographymrept
AT yangtianyi physicsinformedneuralnetworkspinnforlowsnrmagneticresonanceelectricalpropertiestomographymrept
AT chentiao physicsinformedneuralnetworkspinnforlowsnrmagneticresonanceelectricalpropertiestomographymrept
AT yuanzilong physicsinformedneuralnetworkspinnforlowsnrmagneticresonanceelectricalpropertiestomographymrept
AT yuwenwei physicsinformedneuralnetworkspinnforlowsnrmagneticresonanceelectricalpropertiestomographymrept