Cargando…

Generating High-Resolution CT Slices from Two Image Series Using Deep-Learning-Based Resolution Enhancement Methods

Medical image super-resolution (SR) has mainly been developed for a single image in the literature. However, there is a growing demand for high-resolution, thin-slice medical images. We hypothesized that fusing the two planes of a computed tomography (CT) study and applying the SR model to the third...

Descripción completa

Detalles Bibliográficos
Autores principales: Chao, Heng-Sheng, Wu, Yu-Hong, Siana, Linda, Chen, Yuh-Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689374/
https://www.ncbi.nlm.nih.gov/pubmed/36359568
http://dx.doi.org/10.3390/diagnostics12112725
Descripción
Sumario:Medical image super-resolution (SR) has mainly been developed for a single image in the literature. However, there is a growing demand for high-resolution, thin-slice medical images. We hypothesized that fusing the two planes of a computed tomography (CT) study and applying the SR model to the third plane could yield high-quality thin-slice SR images. From the same CT study, we collected axial planes of 1 mm and 5 mm in thickness and coronal planes of 5 mm in thickness. Four SR algorithms were then used for SR reconstruction. Quantitative measurements were performed for image quality testing. We also tested the effects of different regions of interest (ROIs). Based on quantitative comparisons, the image quality obtained when the SR models were applied to the sagittal plane was better than that when applying the models to the other planes. The results were statistically significant according to the Wilcoxon signed-rank test. The overall effect of the enhanced deep residual network (EDSR) model was superior to those of the other three resolution-enhancement methods. A maximal ROI containing minimal blank areas was the most appropriate for quantitative measurements. Fusing two series of thick-slice CT images and applying SR models to the third plane can yield high-resolution thin-slice CT images. EDSR provides superior SR performance across all ROI conditions.