Cargando…
Evaluating the Performance of Deep Learning Frameworks for Malaria Parasite Detection Using Microscopic Images of Peripheral Blood Smears
Malaria is a significant health concern in many third-world countries, especially for pregnant women and young children. It accounted for about 229 million cases and 600,000 mortality globally in 2019. Hence, rapid and accurate detection is vital. This study is focused on achieving three goals. The...
Autores principales: | Uzun Ozsahin, Dilber, Mustapha, Mubarak Taiwo, Bartholomew Duwa, Basil, Ozsahin, Ilker |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689376/ https://www.ncbi.nlm.nih.gov/pubmed/36359544 http://dx.doi.org/10.3390/diagnostics12112702 |
Ejemplares similares
-
Computer-Aided Detection and Classification of Monkeypox and Chickenpox Lesion in Human Subjects Using Deep Learning Framework
por: Uzun Ozsahin, Dilber, et al.
Publicado: (2023) -
Breast Cancer Screening Based on Supervised Learning and Multi-Criteria Decision-Making
por: Mustapha, Mubarak Taiwo, et al.
Publicado: (2022) -
Mathematical Assessment of Machine Learning Models Used for Brain Tumor Diagnosis
por: Uzun Ozsahin, Dilber, et al.
Publicado: (2023) -
Review on Diagnosis of COVID-19 from Chest CT Images Using Artificial Intelligence
por: Ozsahin, Ilker, et al.
Publicado: (2020) -
COVID-19 Prediction Using Black-Box Based Pearson Correlation Approach
por: Uzun Ozsahin, Dilber, et al.
Publicado: (2023)