Cargando…
A Comparison of Neural Networks and Center of Gravity in Muon Hit Position Estimation
The performance of cosmic-ray tomography systems is largely determined by their tracking accuracy. With conventional scintillation detector technology, good precision can be achieved with a small pitch between the elements of the detector array. Improving the resolution implies increasing the number...
Autores principales: | Aktas, Kadir, Kiisk, Madis, Giammanco, Andrea, Anbarjafari, Gholamreza, Mägi, Märt |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689399/ https://www.ncbi.nlm.nih.gov/pubmed/36421514 http://dx.doi.org/10.3390/e24111659 |
Ejemplares similares
-
Deep convolutional neural networks for detection of abnormalities in chest X-rays trained on the very large dataset
por: Aktas, Kadir, et al.
Publicado: (2022) -
Hardware and Software Development for Isotonic Strain and Isometric Stress Measurements of Linear Ionic Actuators
por: Harjo, Madis, et al.
Publicado: (2019) -
In-Flight Estimation of Center of Gravity Position Using All-Accelerometers
por: Al-Rawashdeh, Yazan Mohammad, et al.
Publicado: (2014) -
The RPC hits in the CMS muon reconstruction
por: Min Suk Kim
Publicado: (2012) -
Ungulate Detection and Species Classification from Camera Trap Images Using RetinaNet and Faster R-CNN
por: Vecvanags, Alekss, et al.
Publicado: (2022)