Cargando…

A Machine Learning Challenge: Detection of Cardiac Amyloidosis Based on Bi-Atrial and Right Ventricular Strain and Cardiac Function

Background: This study challenges state-of-the-art cardiac amyloidosis (CA) diagnostics by feeding multi-chamber strain and cardiac function into supervised machine (SVM) learning algorithms. Methods: Forty-three CA (32 males; 79 years (IQR 71; 85)), 20 patients with hypertrophic cardiomyopathy (HCM...

Descripción completa

Detalles Bibliográficos
Autores principales: Eckstein, Jan, Moghadasi, Negin, Körperich, Hermann, Weise Valdés, Elena, Sciacca, Vanessa, Paluszkiewicz, Lech, Burchert, Wolfgang, Piran, Misagh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689404/
https://www.ncbi.nlm.nih.gov/pubmed/36359536
http://dx.doi.org/10.3390/diagnostics12112693
_version_ 1784836525731610624
author Eckstein, Jan
Moghadasi, Negin
Körperich, Hermann
Weise Valdés, Elena
Sciacca, Vanessa
Paluszkiewicz, Lech
Burchert, Wolfgang
Piran, Misagh
author_facet Eckstein, Jan
Moghadasi, Negin
Körperich, Hermann
Weise Valdés, Elena
Sciacca, Vanessa
Paluszkiewicz, Lech
Burchert, Wolfgang
Piran, Misagh
author_sort Eckstein, Jan
collection PubMed
description Background: This study challenges state-of-the-art cardiac amyloidosis (CA) diagnostics by feeding multi-chamber strain and cardiac function into supervised machine (SVM) learning algorithms. Methods: Forty-three CA (32 males; 79 years (IQR 71; 85)), 20 patients with hypertrophic cardiomyopathy (HCM, 10 males; 63.9 years (±7.4)) and 44 healthy controls (CTRL, 23 males; 56.3 years (IQR 52.5; 62.9)) received cardiovascular magnetic resonance imaging. Left atrial, right atrial and right ventricular strain parameters and cardiac function generated a 41-feature matrix for decision tree (DT), k-nearest neighbor (KNN), SVM linear and SVM radial basis function (RBF) kernel algorithm processing. A 10-feature principal component analysis (PCA) was conducted using SVM linear and RBF. Results: Forty-one features resulted in diagnostic accuracies of 87.9% (AUC = 0.960) for SVM linear, 90.9% (0.996; Precision = 94%; Sensitivity = 100%; F1-Score = 97%) using RBF kernel, 84.9% (0.970) for KNN, and 78.8% (0.787) for DT. The 10-feature PCA achieved 78.9% (0.962) via linear SVM and 81.8% (0.996) via RBF SVM. Explained variance presented bi-atrial longitudinal strain and left and right atrial ejection fraction as valuable CA predictors. Conclusion: SVM RBF kernel achieved competitive diagnostic accuracies under supervised conditions. Machine learning of multi-chamber cardiac strain and function may offer novel perspectives for non-contrast clinical decision-support systems in CA diagnostics.
format Online
Article
Text
id pubmed-9689404
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-96894042022-11-25 A Machine Learning Challenge: Detection of Cardiac Amyloidosis Based on Bi-Atrial and Right Ventricular Strain and Cardiac Function Eckstein, Jan Moghadasi, Negin Körperich, Hermann Weise Valdés, Elena Sciacca, Vanessa Paluszkiewicz, Lech Burchert, Wolfgang Piran, Misagh Diagnostics (Basel) Article Background: This study challenges state-of-the-art cardiac amyloidosis (CA) diagnostics by feeding multi-chamber strain and cardiac function into supervised machine (SVM) learning algorithms. Methods: Forty-three CA (32 males; 79 years (IQR 71; 85)), 20 patients with hypertrophic cardiomyopathy (HCM, 10 males; 63.9 years (±7.4)) and 44 healthy controls (CTRL, 23 males; 56.3 years (IQR 52.5; 62.9)) received cardiovascular magnetic resonance imaging. Left atrial, right atrial and right ventricular strain parameters and cardiac function generated a 41-feature matrix for decision tree (DT), k-nearest neighbor (KNN), SVM linear and SVM radial basis function (RBF) kernel algorithm processing. A 10-feature principal component analysis (PCA) was conducted using SVM linear and RBF. Results: Forty-one features resulted in diagnostic accuracies of 87.9% (AUC = 0.960) for SVM linear, 90.9% (0.996; Precision = 94%; Sensitivity = 100%; F1-Score = 97%) using RBF kernel, 84.9% (0.970) for KNN, and 78.8% (0.787) for DT. The 10-feature PCA achieved 78.9% (0.962) via linear SVM and 81.8% (0.996) via RBF SVM. Explained variance presented bi-atrial longitudinal strain and left and right atrial ejection fraction as valuable CA predictors. Conclusion: SVM RBF kernel achieved competitive diagnostic accuracies under supervised conditions. Machine learning of multi-chamber cardiac strain and function may offer novel perspectives for non-contrast clinical decision-support systems in CA diagnostics. MDPI 2022-11-04 /pmc/articles/PMC9689404/ /pubmed/36359536 http://dx.doi.org/10.3390/diagnostics12112693 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Eckstein, Jan
Moghadasi, Negin
Körperich, Hermann
Weise Valdés, Elena
Sciacca, Vanessa
Paluszkiewicz, Lech
Burchert, Wolfgang
Piran, Misagh
A Machine Learning Challenge: Detection of Cardiac Amyloidosis Based on Bi-Atrial and Right Ventricular Strain and Cardiac Function
title A Machine Learning Challenge: Detection of Cardiac Amyloidosis Based on Bi-Atrial and Right Ventricular Strain and Cardiac Function
title_full A Machine Learning Challenge: Detection of Cardiac Amyloidosis Based on Bi-Atrial and Right Ventricular Strain and Cardiac Function
title_fullStr A Machine Learning Challenge: Detection of Cardiac Amyloidosis Based on Bi-Atrial and Right Ventricular Strain and Cardiac Function
title_full_unstemmed A Machine Learning Challenge: Detection of Cardiac Amyloidosis Based on Bi-Atrial and Right Ventricular Strain and Cardiac Function
title_short A Machine Learning Challenge: Detection of Cardiac Amyloidosis Based on Bi-Atrial and Right Ventricular Strain and Cardiac Function
title_sort machine learning challenge: detection of cardiac amyloidosis based on bi-atrial and right ventricular strain and cardiac function
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689404/
https://www.ncbi.nlm.nih.gov/pubmed/36359536
http://dx.doi.org/10.3390/diagnostics12112693
work_keys_str_mv AT ecksteinjan amachinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT moghadasinegin amachinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT korperichhermann amachinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT weisevaldeselena amachinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT sciaccavanessa amachinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT paluszkiewiczlech amachinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT burchertwolfgang amachinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT piranmisagh amachinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT ecksteinjan machinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT moghadasinegin machinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT korperichhermann machinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT weisevaldeselena machinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT sciaccavanessa machinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT paluszkiewiczlech machinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT burchertwolfgang machinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction
AT piranmisagh machinelearningchallengedetectionofcardiacamyloidosisbasedonbiatrialandrightventricularstrainandcardiacfunction