Cargando…
A Machine Learning Challenge: Detection of Cardiac Amyloidosis Based on Bi-Atrial and Right Ventricular Strain and Cardiac Function
Background: This study challenges state-of-the-art cardiac amyloidosis (CA) diagnostics by feeding multi-chamber strain and cardiac function into supervised machine (SVM) learning algorithms. Methods: Forty-three CA (32 males; 79 years (IQR 71; 85)), 20 patients with hypertrophic cardiomyopathy (HCM...
Autores principales: | Eckstein, Jan, Moghadasi, Negin, Körperich, Hermann, Weise Valdés, Elena, Sciacca, Vanessa, Paluszkiewicz, Lech, Burchert, Wolfgang, Piran, Misagh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689404/ https://www.ncbi.nlm.nih.gov/pubmed/36359536 http://dx.doi.org/10.3390/diagnostics12112693 |
Ejemplares similares
-
CMR-based right ventricular strain analysis in cardiac amyloidosis and its potential as a supportive diagnostic feature
por: Eckstein, Jan, et al.
Publicado: (2022) -
Cardiovascular Magnetic Resonance Imaging-Based Right Atrial Strain Analysis of Cardiac Amyloidosis
por: Eckstein, Jan, et al.
Publicado: (2022) -
Machine-Learning-Based Diagnostics of Cardiac Sarcoidosis Using Multi-Chamber Wall Motion Analyses
por: Eckstein, Jan, et al.
Publicado: (2023) -
Multi-parametric analyses to investigate dependencies of normal left atrial strain by cardiovascular magnetic resonance feature tracking
por: Eckstein, Jan, et al.
Publicado: (2022) -
Left-Ventricular Reference Myocardial Strain Assessed by Cardiovascular Magnetic Resonance Feature Tracking and fSENC—Impact of Temporal Resolution and Cardiac Muscle Mass
por: Weise Valdés, Elena, et al.
Publicado: (2021)