Cargando…

Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin

Bearing is a key part of rotating machinery. Accurate prediction of bearing life can avoid serious failures. To address the current problem of low accuracy and poor predictability of bearing life prediction, a bearing life prediction method based on digital twins is proposed. Firstly, the vibration...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Rui, Zeng, Zhiqiang, Li, Yanfeng, Liu, Jiahao, Wang, Zhijian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689441/
https://www.ncbi.nlm.nih.gov/pubmed/36359668
http://dx.doi.org/10.3390/e24111578
Descripción
Sumario:Bearing is a key part of rotating machinery. Accurate prediction of bearing life can avoid serious failures. To address the current problem of low accuracy and poor predictability of bearing life prediction, a bearing life prediction method based on digital twins is proposed. Firstly, the vibration signals of rolling bearings are collected, and the time-domain and frequency-domain features of the actual data set are extracted to construct the feature matrix. Then unsupervised classification and feature selection are carried out by improving the self-organizing feature mapping method. Using sensitive features to construct a twin dataset framework and using the integrated learning CatBoost method to supplement the missing data sets, a complete digital twin dataset is formed. Secondly, important information is extracted through macro and micro attention mechanisms to achieve weight amplification. The life prediction of rolling bearing is realized by using fusion features. Finally, the proposed method is verified by experiments. The experimental results show that this method can predict the bearing life with a limited amount of measured data, which is superior to other prediction methods and can provide a new idea for the health prediction and management of mechanical components.